Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,20 @@
|
|
1 |
-
"""app.py"""
|
2 |
-
|
3 |
import streamlit as st
|
4 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
model_name = "gpt2"
|
8 |
-
model = GPT2LMHeadModel.from_pretrained(model_name)
|
9 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
10 |
|
11 |
-
#
|
12 |
-
def
|
13 |
-
input_text = f"
|
14 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
15 |
|
16 |
# Generate text
|
@@ -22,16 +26,17 @@ def generate_blogpost(topic):
|
|
22 |
|
23 |
# Streamlit app
|
24 |
def main():
|
25 |
-
st.title("
|
26 |
|
27 |
# Sidebar input for topic
|
28 |
-
topic = st.sidebar.text_input("Enter topic
|
29 |
|
30 |
# Generate button
|
31 |
-
if st.sidebar.button("Generate
|
32 |
-
|
33 |
-
|
34 |
-
st.
|
|
|
35 |
|
36 |
if __name__ == "__main__":
|
37 |
main()
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
model_name = "Llama-2-7b-finetuned-with-QLoRa"
|
5 |
+
|
6 |
+
# Load model and tokenizer
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model_and_tokenizer(model_name):
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
return model, tokenizer
|
12 |
|
13 |
+
model, tokenizer = load_model_and_tokenizer(model_name)
|
|
|
|
|
|
|
14 |
|
15 |
+
# Function to generate response
|
16 |
+
def generate_response(topic):
|
17 |
+
input_text = f"Response about {topic}:"
|
18 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
19 |
|
20 |
# Generate text
|
|
|
26 |
|
27 |
# Streamlit app
|
28 |
def main():
|
29 |
+
st.title("Llama 2 Fine-Tuned Demo with QLoRa")
|
30 |
|
31 |
# Sidebar input for topic
|
32 |
+
topic = st.sidebar.text_input("Enter your topic", "a crazy person driving a car")
|
33 |
|
34 |
# Generate button
|
35 |
+
if st.sidebar.button("Generate Response"):
|
36 |
+
with st.spinner("Generating response..."):
|
37 |
+
response = generate_response(topic)
|
38 |
+
st.subheader(f"Generated response on '{topic}':")
|
39 |
+
st.write(response)
|
40 |
|
41 |
if __name__ == "__main__":
|
42 |
main()
|