File size: 8,274 Bytes
dddb041
 
b8a701a
b46e87b
46b2abb
85b1357
 
46b2abb
b46e87b
77b1ab6
 
 
 
 
 
 
 
 
 
 
 
 
b46e87b
dddb041
b46e87b
dddb041
 
 
b46e87b
05fd8e7
b46e87b
 
 
46b2abb
 
 
 
 
 
85b1357
 
 
 
 
944593a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85b1357
b1b4f10
6e754cf
 
 
 
ccde57b
 
b46e87b
6e754cf
ccde57b
b8a701a
b46e87b
2b5f98f
b1b4f10
b46e87b
a146eda
2b5f98f
6e754cf
117fdd4
db08793
b46e87b
7797f1d
 
98bb424
b46e87b
 
77b1ab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b46e87b
 
6815e34
2b5f98f
b46e87b
 
 
77b1ab6
 
 
859c25a
b46e87b
a146eda
b46e87b
 
85b1357
 
322db57
77b1ab6
b46e87b
b1b4f10
b46e87b
538d554
77b1ab6
46b2abb
77b1ab6
 
2b5f98f
 
 
 
 
 
 
b46e87b
77b1ab6
057bc07
2b5f98f
b46e87b
2b5f98f
b46e87b
77b1ab6
 
a200bb2
b46e87b
 
 
77b1ab6
 
 
 
 
 
23f25b9
b46e87b
77b1ab6
 
 
 
 
 
 
23f25b9
77b1ab6
c133494
2b5f98f
b46e87b
 
057bc07
2b5f98f
057bc07
 
c03b3ba
b46e87b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import json
import logging
import torch
import base64
import rembg
import numpy as np
from io import BytesIO
from PIL import Image
from diffusers import (
    DiffusionPipeline, 
    EulerDiscreteScheduler, 
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    KDPM2DiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    DEISMultistepScheduler,
    UniPCMultistepScheduler
)
import spaces

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
pipe.to("cuda")

def image_to_base64(image: Image) -> str:
    buffered = BytesIO()
    image.save(buffered, format="PNG")  # You can change the format as needed (e.g., "JPEG")
    img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
    return img_base64

def remove_bg(image: Image):
    input_array_bg = np.array(image)
    # Apply background removal using rembg
    output_array_bg = rembg.remove(input_array_bg)
    # Create a PIL Image from the output array
    img = Image.fromarray(output_array_bg)

    mask = img.convert('L')  # Convert to grayscale
    mask_array = np.array(mask)

    # Create a binary mask (non-background areas are 255, background areas are 0)
    binary_mask = mask_array > 0

    # Find the bounding box of the non-background areas
    coords = np.argwhere(binary_mask)
    x0, y0 = coords.min(axis=0)
    x1, y1 = coords.max(axis=0) + 1

    # Crop the output image using the bounding box
    cropped_output_image = img.crop((y0, x0, y1, x1))

    # Resize the cropped image to 1024x1024
    upscaled_image = cropped_output_image.resize((1024, 1024), Image.LANCZOS)
    return upscaled_image
    
def update_selection(evt: gr.SelectData):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index
    )

@spaces.GPU
def run_lora(prompt, negative_prompt, cfg_scale, steps, scheduler, seed, width, height, lora_scale):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")

    # selected_lora = loras[selected_index]
    # lora_path = selected_lora["repo"]
    # trigger_word = selected_lora["trigger_word"]

    # Load LoRA weights
    pipe.load_lora_weights("Abdullah-Habib/lora-logo-v1",scale = 1)
    # pipe.load_lora_weights("Abdullah-Habib/logolora",scale = 1)
    # pipe.load_lora_weights("Abdullah-Habib/icon-lora",scale = 0.5)

    # Set scheduler
    scheduler_config = pipe.scheduler.config
    if scheduler == "DPM++ 2M":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
    elif scheduler == "DPM++ 2M Karras":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "DPM++ 2M SDE":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++")
    elif scheduler == "DPM++ 2M SDE Karras":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
    elif scheduler == "DPM++ SDE":
        pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config)
    elif scheduler == "DPM++ SDE Karras":
        pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "DPM2":
        pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "DPM2 Karras":
        pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "DPM2 a":
        pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "DPM2 a Karras":
        pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "Euler":
        pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "Euler a":
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "Heun":
        pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "LMS":
        pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "LMS Karras":
        pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "DEIS":
        pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config)
    elif scheduler == "UniPC":
        pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config)

    # Set random seed for reproducibility
    generator = torch.Generator(device="cuda").manual_seed(seed)

    # Generate image
    image = pipe(
        prompt=f"{prompt}, rounded square, logo, logoredmaf, icons",
        negative_prompt=negative_prompt,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        # cross_attention_kwargs={"scale": lora_scale},
    ).images[0]

    # Unload LoRA weights
    pipe.unload_lora_weights()
    image_without_bg = remove_bg(image)
    return image_to_base64(image_without_bg)

with gr.Blocks(theme=gr.themes.Soft()) as app:

    selected_index = gr.State(None)

    with gr.Row():
        with gr.Column(scale=2):
            result = gr.Text(label="Generated Image")
            generate_button = gr.Button("Generate", variant="primary")

        # with gr.Column(scale=1):
        #     gallery = gr.Gallery(
        #         [(item["image"], item["title"]) for item in loras],
        #         label="LoRA Gallery",
        #         allow_preview=False,
        #         columns=2
        #     )

    with gr.Row():
        with gr.Column():
            prompt_title = ""
            selected_info = gr.Markdown("")
            prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Please enter a prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")

        with gr.Column():
            with gr.Row():
                cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
            
            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
            
            with gr.Row():
                seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
                lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)
            
            scheduler = gr.Dropdown(
                label="Scheduler", 
                choices=[
                    "DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras",
                    "DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras",
                    "Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC"
                ],
                value="DPM++ 2M SDE Karras"
            )

    # gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
    
    generate_button.click(
        fn=run_lora,
        inputs=[prompt, negative_prompt, cfg_scale, steps, scheduler, seed, width, height, lora_scale],
        outputs=[result]
    )

app.queue()
app.launch()