Spaces:
Sleeping
Sleeping
File size: 8,274 Bytes
dddb041 b8a701a b46e87b 46b2abb 85b1357 46b2abb b46e87b 77b1ab6 b46e87b dddb041 b46e87b dddb041 b46e87b 05fd8e7 b46e87b 46b2abb 85b1357 944593a 85b1357 b1b4f10 6e754cf ccde57b b46e87b 6e754cf ccde57b b8a701a b46e87b 2b5f98f b1b4f10 b46e87b a146eda 2b5f98f 6e754cf 117fdd4 db08793 b46e87b 7797f1d 98bb424 b46e87b 77b1ab6 b46e87b 6815e34 2b5f98f b46e87b 77b1ab6 859c25a b46e87b a146eda b46e87b 85b1357 322db57 77b1ab6 b46e87b b1b4f10 b46e87b 538d554 77b1ab6 46b2abb 77b1ab6 2b5f98f b46e87b 77b1ab6 057bc07 2b5f98f b46e87b 2b5f98f b46e87b 77b1ab6 a200bb2 b46e87b 77b1ab6 23f25b9 b46e87b 77b1ab6 23f25b9 77b1ab6 c133494 2b5f98f b46e87b 057bc07 2b5f98f 057bc07 c03b3ba b46e87b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import json
import logging
import torch
import base64
import rembg
import numpy as np
from io import BytesIO
from PIL import Image
from diffusers import (
DiffusionPipeline,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler
)
import spaces
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
pipe.to("cuda")
def image_to_base64(image: Image) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change the format as needed (e.g., "JPEG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_base64
def remove_bg(image: Image):
input_array_bg = np.array(image)
# Apply background removal using rembg
output_array_bg = rembg.remove(input_array_bg)
# Create a PIL Image from the output array
img = Image.fromarray(output_array_bg)
mask = img.convert('L') # Convert to grayscale
mask_array = np.array(mask)
# Create a binary mask (non-background areas are 255, background areas are 0)
binary_mask = mask_array > 0
# Find the bounding box of the non-background areas
coords = np.argwhere(binary_mask)
x0, y0 = coords.min(axis=0)
x1, y1 = coords.max(axis=0) + 1
# Crop the output image using the bounding box
cropped_output_image = img.crop((y0, x0, y1, x1))
# Resize the cropped image to 1024x1024
upscaled_image = cropped_output_image.resize((1024, 1024), Image.LANCZOS)
return upscaled_image
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index
)
@spaces.GPU
def run_lora(prompt, negative_prompt, cfg_scale, steps, scheduler, seed, width, height, lora_scale):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
# selected_lora = loras[selected_index]
# lora_path = selected_lora["repo"]
# trigger_word = selected_lora["trigger_word"]
# Load LoRA weights
pipe.load_lora_weights("Abdullah-Habib/lora-logo-v1",scale = 1)
# pipe.load_lora_weights("Abdullah-Habib/logolora",scale = 1)
# pipe.load_lora_weights("Abdullah-Habib/icon-lora",scale = 0.5)
# Set scheduler
scheduler_config = pipe.scheduler.config
if scheduler == "DPM++ 2M":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
elif scheduler == "DPM++ 2M Karras":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM++ 2M SDE":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++")
elif scheduler == "DPM++ 2M SDE Karras":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
elif scheduler == "DPM++ SDE":
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config)
elif scheduler == "DPM++ SDE Karras":
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM2":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config)
elif scheduler == "DPM2 Karras":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM2 a":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "DPM2 a Karras":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "Euler":
pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "Euler a":
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "Heun":
pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "LMS":
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "LMS Karras":
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DEIS":
pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config)
elif scheduler == "UniPC":
pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
# Set random seed for reproducibility
generator = torch.Generator(device="cuda").manual_seed(seed)
# Generate image
image = pipe(
prompt=f"{prompt}, rounded square, logo, logoredmaf, icons",
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
# cross_attention_kwargs={"scale": lora_scale},
).images[0]
# Unload LoRA weights
pipe.unload_lora_weights()
image_without_bg = remove_bg(image)
return image_to_base64(image_without_bg)
with gr.Blocks(theme=gr.themes.Soft()) as app:
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=2):
result = gr.Text(label="Generated Image")
generate_button = gr.Button("Generate", variant="primary")
# with gr.Column(scale=1):
# gallery = gr.Gallery(
# [(item["image"], item["title"]) for item in loras],
# label="LoRA Gallery",
# allow_preview=False,
# columns=2
# )
with gr.Row():
with gr.Column():
prompt_title = ""
selected_info = gr.Markdown("")
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Please enter a prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)
scheduler = gr.Dropdown(
label="Scheduler",
choices=[
"DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras",
"DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras",
"Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC"
],
value="DPM++ 2M SDE Karras"
)
# gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
generate_button.click(
fn=run_lora,
inputs=[prompt, negative_prompt, cfg_scale, steps, scheduler, seed, width, height, lora_scale],
outputs=[result]
)
app.queue()
app.launch()
|