File size: 2,241 Bytes
a15c0ab
30f0bac
 
ad5cb25
a15c0ab
30f0bac
 
17397c2
30f0bac
 
 
 
17397c2
30f0bac
17397c2
 
 
 
 
 
30f0bac
 
 
 
 
ad5cb25
30f0bac
 
 
 
ad5cb25
30f0bac
 
 
 
 
 
 
17397c2
30f0bac
ad5cb25
17397c2
30f0bac
 
 
 
 
17397c2
a15c0ab
 
30f0bac
17397c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import tempfile
import os
from SDXLImageGenerator import SDXLImageGenerator  # Import your existing class

class ControlNetProcessor:
    def controlnet_image(self, image):
        # Placeholder for ControlNet processing (e.g., returning a processed image or placeholder text)
        return "Placeholder for ControlNet Output Image"

class VideoGenerator:
    def generate_3d_video(self, controlled_image):
        # Creating a temporary video with a placeholder for demonstration purposes.
        with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp:
            # Generates a sample video with FFmpeg using a solid color and overlay text
            os.system(
                f"ffmpeg -f lavfi -i color=c=blue:s=320x240:d=5 "
                f"-vf drawtext=fontfile=/path/to/font.ttf:text='3D Model':fontsize=24:fontcolor=white:x=(w-text_w)/2:y=(h-text_h)/2 "
                f"{tmp.name}"
            )
            video_path = tmp.name
        return video_path

class GradioApp:
    def __init__(self):
        self.sdxl_generator = SDXLImageGenerator()  # Use your existing class
        self.controlnet_processor = ControlNetProcessor()
        self.video_generator = VideoGenerator()

    def full_pipeline(self, prompt):
        initial_image = self.sdxl_generator.generate_images([prompt])[0]
        controlled_image = self.controlnet_processor.controlnet_image(initial_image)
        video_path = self.video_generator.generate_3d_video(controlled_image)
        return initial_image, controlled_image, video_path

    def launch(self):
        interface = gr.Interface(
            fn=self.full_pipeline,
            inputs=gr.Textbox(label="Input Prompt"),
            outputs=[
                gr.Image(label="Generated Image"),
                gr.Textbox(label="ControlNet Output Image Placeholder"),
                gr.Video(label="3D Model Video")
            ],
            title="SDXL to ControlNet to 3D Pipeline",
            description="Generate an image using SDXL, refine it with ControlNet, and generate a 3D video output."
        )
        interface.launch(share=True)  # Added `share=True` for public link

if __name__ == "__main__":
    app = GradioApp()
    app.launch()