Spaces:
Paused
Paused
File size: 2,492 Bytes
fc352b3 a15c0ab 30f0bac ad5cb25 583955f 66a8046 2f8a737 66a8046 30f0bac 66a8046 673639e 9304db7 30f0bac ad5cb25 66a8046 27c0c4f 66a8046 30f0bac 5f35729 ad5cb25 65ec2c8 5f35729 65ec2c8 9d98595 157398f 60367c0 9d98595 65ec2c8 30f0bac 724d8ef e43b248 724d8ef e43b248 5f35729 a15c0ab 30f0bac e43b248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import os
import gradio as gr
import tempfile
from SDXLImageGenerator import SDXLImageGenerator # Import your existing class
import sys
from Image3DProcessor import Image3DProcessor # Import your 3D processing class
from PIL import Image
import io
class VideoGenerator:
def __init__(self, model_cfg_path, model_repo_id, model_filename):
# Initialize the Image3DProcessor
self.processor = Image3DProcessor(model_cfg_path, model_repo_id, model_filename)
def generate_3d_video(self, image):
# Preprocess the image first
processed_image = self.processor.preprocess(image)
# Then pass it to reconstruct_and_export
video_data = self.processor.reconstruct_and_export(processed_image)
return video_data
class GradioApp:
def __init__(self):
self.sdxl_generator = SDXLImageGenerator() # Use your existing class
# Initialize VideoGenerator with required paths and details
self.video_generator = VideoGenerator(
model_cfg_path="/home/user/app/splatter-image/gradio_config.yaml",
model_repo_id="szymanowiczs/splatter-image-multi-category-v1",
model_filename="model_latest.pth"
)
def full_pipeline(self, prompt):
# Generate the initial image using SDXLImageGenerator
initial_image = self.sdxl_generator.generate_images([prompt])[0]
# Generate a 3D video using the image
video_data = self.video_generator.generate_3d_video(initial_image)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as video_file:
video_file.write(video_data)
video_path = video_file.name
# Convert bytes to a PIL Image for further processing and display
initial_image = Image.open(io.BytesIO(initial_image))
return initial_image, video_path
def launch(self):
with gr.Blocks() as interface:
prompt_input = gr.Textbox(label="Input Prompt", elem_id="input_textbox")
generate_button = gr.Button("Generate")
with gr.Row():
image_output = gr.Image(label="Generated Image", elem_id="generated_image")
video_output = gr.Video(label="3D Model Video", elem_id="model_video")
generate_button.click(fn=self.full_pipeline, inputs=prompt_input, outputs=[image_output, video_output])
interface.launch(share=True)
if __name__ == "__main__":
app = GradioApp()
app.launch() |