Spaces:
Paused
Paused
import gradio as gr | |
import tempfile | |
import os | |
class SDXLGenerator: | |
def generate_image(self, prompt): | |
# Placeholder for image generation (e.g., returning a sample image or empty image) | |
return "Placeholder for Generated Image" | |
class ControlNetProcessor: | |
def controlnet_image(self, image): | |
# Placeholder for ControlNet processing (e.g., returning a sample image or empty image) | |
return "Placeholder for ControlNet Output Image" | |
class VideoGenerator: | |
def generate_3d_video(self, controlled_image): | |
# Placeholder: creating a dummy video for demonstration purposes. | |
video_path = "generated_video.mp4" | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp: | |
# Placeholder: creating a dummy video for demonstration purposes. | |
os.system(f"ffmpeg -f lavfi -i color=c=blue:s=320x240:d=5 -vf drawtext=fontfile=/path/to/font.ttf:text='3D Model':fontsize=24:fontcolor=white:x=(w-text_w)/2:y=(h-text_h)/2 {tmp.name}") | |
video_path = tmp.name | |
return video_path | |
class GradioApp: | |
def __init__(self): | |
self.sdxl_generator = SDXLGenerator() | |
self.controlnet_processor = ControlNetProcessor() | |
self.video_generator = VideoGenerator() | |
def full_pipeline(self, prompt): | |
initial_image = self.sdxl_generator.generate_image(prompt) | |
controlled_image = self.controlnet_processor.controlnet_image(initial_image) | |
video_path = self.video_generator.generate_3d_video(controlled_image) | |
return initial_image, controlled_image, video_path | |
def launch(self): | |
interface = gr.Interface( | |
fn=self.full_pipeline, | |
inputs=[gr.Textbox(label="Input Prompt")], | |
outputs=[ | |
gr.Image(type="pil", label="Generated Image"), | |
gr.Image(type="pil", label="ControlNet Output Image"), | |
gr.Video(label="3D Model Video") | |
], | |
title="SDXL to ControlNet to 3D Pipeline", | |
description="Generate an image using SDXL, refine it with ControlNet, and generate a 3D video output." | |
) | |
interface.launch() | |
if __name__ == "__main__": | |
app = GradioApp() | |
app.launch() |