Spaces:
Paused
Paused
import os | |
import gradio as gr | |
import tempfile | |
from SDXLImageGenerator import SDXLImageGenerator # Import your existing class | |
import sys | |
from Image3DProcessor import Image3DProcessor # Import your 3D processing class | |
from PIL import Image | |
import io | |
from io import BytesIO | |
import numpy as np | |
class VideoGenerator: | |
def __init__(self, model_cfg_path, model_filename): | |
# Initialize the Image3DProcessor | |
self.processor = Image3DProcessor(model_cfg_path, model_filename) | |
def generate_3d_video(self, image): | |
# Ensure the image is a PIL Image object | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
# Preprocess the image first | |
processed_image = self.processor.preprocess(image) | |
# Then pass it to reconstruct_and_export | |
video_data = self.processor.reconstruct_and_export(processed_image) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as video_file: | |
video_file.write(video_data) | |
video_path = video_file.name | |
return video_path | |
class GradioApp: | |
def __init__(self): | |
self.sdxl_generator = SDXLImageGenerator() | |
# Initialize VideoGenerator with required paths and details | |
self.video_generator = VideoGenerator( | |
model_cfg_path="/home/user/app/splatter-image/gradio_config.yaml", | |
model_filename="/home/user/app/fused_text_to_3D.pth" | |
) | |
def launch(self): | |
with gr.Blocks(css="#small_video { width: 400px !important; height: 300px !important; }") as interface: | |
# Input for the prompt at the top | |
prompt_input = gr.Textbox(label="Input Prompt", elem_id="input_textbox") | |
# Button for generating the 3D object | |
generate_3d_object = gr.Button("Generate 3D object") | |
# Outputs: image on the bottom left, video on the bottom right | |
with gr.Row(): | |
with gr.Column(): | |
image_output = gr.Image(label="Generated Image", elem_id="generated_image") | |
with gr.Column(): | |
video_output = gr.Video(label="3D Model Video", elem_id="small_video") | |
# Generate the image first | |
def generate_image_and_display(prompt): | |
modified_prompt = prompt + ", isolated, on a plain background, minimal, no extra objects" | |
print(modified_prompt) | |
# Generate the image from the prompt | |
image_data = self.sdxl_generator.generate_image([modified_prompt])[0] | |
return Image.open(BytesIO(image_data)) | |
# Generate the 3D after the image is ready | |
def generate_3D_from_image(image): | |
# Ensure the image is a PIL Image object | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
# Generate the 3D from the generated image | |
return self.video_generator.generate_3d_video(image) | |
# First click generates the image | |
generate_3d_object.click( | |
fn=generate_image_and_display, | |
inputs=prompt_input, | |
outputs=image_output, | |
queue=True | |
) | |
# Once the image is ready, generate the video | |
image_output.change( | |
fn=generate_3D_from_image, | |
inputs=image_output, | |
outputs=video_output, | |
queue=True | |
) | |
interface.launch(share=True) | |
if __name__ == "__main__": | |
app = GradioApp() | |
app.launch() | |