import torch from diffusers import DiffusionPipeline import time from PIL import Image # Import added for clarity from io import BytesIO class SDXLImageGenerator: def __init__(self): # Check if cuda is available self.use_cuda = torch.cuda.is_available() # Set proper device based on cuda availability self.device = torch.device("cuda" if self.use_cuda else "cpu") print("SDXLImageGenerator Device: ", self.device) # Load the pipeline self.pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16" ) self.pipe.to(self.device) def generate_images(self, prompts): start_time = time.time() # Generate images in a batch outputs = self.pipe(prompt=prompts) images = outputs.images # Convert images to PNG byte data png_images = [] for image in images: buffer = BytesIO() image.save(buffer, format="PNG") png_images.append(buffer.getvalue()) # PNG data in bytes end_time = time.time() print("Total Time SDXL: %4f seconds" % (end_time - start_time)) return png_images