AbdurRehman313
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_repo_path = 'ABC/hotpotQA_BART_Finetuned_E5'
|
7 |
+
model = BartForConditionalGeneration.from_pretrained(model_repo_path)
|
8 |
+
tokenizer = BartTokenizer.from_pretrained(model_repo_path)
|
9 |
+
|
10 |
+
# Ensure the model is in evaluation mode
|
11 |
+
model.eval()
|
12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
+
model.to(device)
|
14 |
+
|
15 |
+
# Streamlit app layout
|
16 |
+
st.title("Question Answering App")
|
17 |
+
|
18 |
+
# User input for context and question
|
19 |
+
context_input = st.text_area("Enter context", height=200)
|
20 |
+
question_input = st.text_area("Enter question")
|
21 |
+
|
22 |
+
# Generate the answer
|
23 |
+
if st.button("Get Answer"):
|
24 |
+
if context_input and question_input:
|
25 |
+
with st.spinner("Generating answer..."):
|
26 |
+
try:
|
27 |
+
# Prepare the input for the model
|
28 |
+
input_text = f"context: {context_input} question: {question_input}"
|
29 |
+
inputs = tokenizer(input_text, return_tensors='pt')
|
30 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
31 |
+
|
32 |
+
# Perform inference
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model.generate(inputs['input_ids'], max_length=50)
|
35 |
+
|
36 |
+
# Decode the output
|
37 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
+
|
39 |
+
st.subheader("Answer")
|
40 |
+
st.write(answer)
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Error during question answering: {e}")
|
43 |
+
else:
|
44 |
+
st.warning("Please enter both context and question.")
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
# import streamlit as st
|
49 |
+
# import requests
|
50 |
+
# import torch
|
51 |
+
# from transformers import pipeline
|
52 |
+
# from transformers import T5ForConditionalGeneration, T5Tokenizer
|
53 |
+
|
54 |
+
# # Replace with your Hugging Face model repository path
|
55 |
+
# model_repo_path = 'AbdurRehman313/hotpotQA_BART_Finetuned_E5'
|
56 |
+
|
57 |
+
# # Load the model and tokenizer
|
58 |
+
# model = T5ForConditionalGeneration.from_pretrained(model_repo_path)
|
59 |
+
# tokenizer = T5Tokenizer.from_pretrained(model_repo_path)
|
60 |
+
|
61 |
+
# #Take model in evaluation mode
|
62 |
+
# model.eval()
|
63 |
+
|
64 |
+
# # Example input question and context (replace with your actual inputs)
|
65 |
+
# # question = "What is the capital of France?"
|
66 |
+
# # context = "France is a country in Europe. Its capital is Paris, which is known for its art, culture, and history."
|
67 |
+
|
68 |
+
# # print(f'Predicted answer: {answer}')
|
69 |
+
# ###
|
70 |
+
|
71 |
+
# # Prepare the input for the model
|
72 |
+
# # input_text = f"context: {context} question: {question} "
|
73 |
+
# # inputs = tokenizer(input_text, return_tensors='pt')
|
74 |
+
|
75 |
+
# # # Move inputs to the appropriate device
|
76 |
+
# # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
77 |
+
# # model.to(device)
|
78 |
+
# # inputs = {key: value.to(device) for key, value in inputs.items()}
|
79 |
+
|
80 |
+
# # # Perform inference
|
81 |
+
# # with torch.no_grad():
|
82 |
+
# # outputs = model.generate(inputs['input_ids'], max_length=50)
|
83 |
+
|
84 |
+
# # # Decode the output
|
85 |
+
# # answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
86 |
+
|
87 |
+
# # Streamlit app layout
|
88 |
+
# st.title("Text Summarization App")
|
89 |
+
|
90 |
+
# # User input
|
91 |
+
# text_input = st.text_area("Enter text to summarize", height=300)
|
92 |
+
|
93 |
+
# # Summarize the text
|
94 |
+
# if st.button("Summarize"):
|
95 |
+
# if text_input:
|
96 |
+
# with st.spinner("Generating summary..."):
|
97 |
+
# try:
|
98 |
+
# summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False)
|
99 |
+
# st.subheader("Summary")
|
100 |
+
# st.write(summary[0]['summary_text'])
|
101 |
+
# except Exception as e:
|
102 |
+
# st.error(f"Error during summarization: {e}")
|
103 |
+
# else:
|
104 |
+
# st.warning("Please enter some text to summarize.")
|