Abir Muhtasim commited on
Commit
c52c03c
·
1 Parent(s): 3018397

upload files

Browse files
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from backend_model import load_model_and_tokenizer, infer_single_sample
3
+
4
+
5
+ java_model_architecture = 'microsoft/graphcodebert-base'
6
+ java_model_path = 'models/java_classifier.pth'
7
+
8
+ python_model_architecture = 'microsoft/graphcodebert-base'
9
+ python_model_path = 'models/python_classifier.pth'
10
+
11
+ @st.cache_resource
12
+ def load_model(arch, path):
13
+ return load_model_and_tokenizer(arch, path)
14
+
15
+
16
+
17
+ st.title('LLM Sniffer')
18
+
19
+ # form
20
+ with st.form(key='my_form'):
21
+
22
+
23
+ # select language - java or python
24
+ language = st.selectbox(
25
+ label="Select Language",
26
+ options=["Java", "Python"],
27
+ key="language"
28
+ )
29
+
30
+
31
+ # text area
32
+
33
+ code = st.text_area(label="", value="", label_visibility="hidden", height=300, placeholder="Paste your code here", key="code")
34
+
35
+ # submit button
36
+ submit_button = st.form_submit_button(label='Submit')
37
+
38
+ if submit_button:
39
+ if code:
40
+
41
+ if language == "Java":
42
+ model, tokenizer = load_model(java_model_architecture, java_model_path)
43
+ else:
44
+ model, tokenizer = load_model(python_model_architecture, python_model_path)
45
+
46
+ result = infer_single_sample(
47
+ code_text=code,
48
+ model=model,
49
+ tokenizer=tokenizer,
50
+ language=language
51
+ )
52
+ st.write(result)
backend_model.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ import re
5
+
6
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, Trainer, TrainingArguments
7
+ from torch.utils.data import DataLoader, Dataset
8
+
9
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
10
+
11
+ # device = torch.device('cpu')
12
+
13
+
14
+ def remove_java_comments(code):
15
+ # Remove single-line comments (//)
16
+ code = re.sub(r'//.*', '', code)
17
+
18
+ # Remove multi-line comments (/* ... */)
19
+ code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
20
+
21
+ return code
22
+
23
+
24
+ def remove_python_comments(code):
25
+
26
+ # Remove single-line comments (#)
27
+ code = re.sub(r'#.*', '', code)
28
+
29
+ # Remove multi-line comments (""" ... """ or ''' ... ''')
30
+ code = re.sub(r'""".*?"""', '', code, flags=re.DOTALL)
31
+ code = re.sub(r"'''.*?'''", '', code, flags=re.DOTALL)
32
+
33
+ return code
34
+
35
+
36
+ # Model with Binary Classifier
37
+ class CodeBERTBinaryClassifier(nn.Module):
38
+ def __init__(self, encoder_model, hidden_size=256, num_layers=2):
39
+ super(CodeBERTBinaryClassifier, self).__init__()
40
+ self.encoder = encoder_model
41
+
42
+ self.classifier = nn.Sequential(
43
+ nn.Dropout(0.3), # Dropout with 30%
44
+ nn.Linear(self.encoder.config.hidden_size, 128), # Hidden layer with 128 units
45
+ nn.BatchNorm1d(128), # Batch normalization for the hidden layer
46
+ nn.ReLU(), # ReLU activation for the hidden layer
47
+ nn.Dropout(0.3), # Dropout with 30%
48
+ nn.Linear(128, 1) # Output layer with 1 unit
49
+ )
50
+
51
+
52
+ def forward(self, input_ids, attention_mask):
53
+ outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
54
+ cls_output = outputs.last_hidden_state[:, 0, :] # [CLS] token representation
55
+ logits = self.classifier(cls_output.detach()).squeeze(-1) # Squeeze for binary logit
56
+ return logits, cls_output
57
+
58
+
59
+
60
+ def infer_single_sample(code_text, model, tokenizer, language='java'):
61
+
62
+ # Ensure model is in evaluation mode
63
+ model.eval()
64
+
65
+ # Remove comments from the code (assuming the same preprocessing as during training)
66
+ if language == 'python':
67
+ code_text = remove_python_comments(code_text)
68
+
69
+ else:
70
+ code_text = remove_java_comments(code_text)
71
+
72
+ # print(code_text)
73
+
74
+ # Tokenize the input
75
+ inputs = tokenizer.encode_plus(
76
+ code_text,
77
+ padding='max_length',
78
+ max_length=512,
79
+ truncation=True,
80
+ return_tensors='pt'
81
+ )
82
+
83
+ # Move inputs to the specified device
84
+ input_ids = inputs['input_ids'].to(device)
85
+ attention_mask = inputs['attention_mask'].to(device)
86
+
87
+ # Disable gradient computation for inference
88
+ with torch.no_grad():
89
+ # Get model prediction
90
+ logits, _ = model(input_ids, attention_mask)
91
+
92
+ # Apply sigmoid to get probability
93
+ probability = torch.sigmoid(logits).cpu().item()
94
+
95
+ # Classify based on 0.5 threshold
96
+ predicted_label = 1 if probability > 0.5 else 0
97
+
98
+ return {
99
+ 'probability': probability,
100
+ 'predicted_label': predicted_label,
101
+ 'interpretation': 'GPT-generated' if predicted_label == 0 else 'Human-written'
102
+ }
103
+
104
+
105
+
106
+ def load_model_and_tokenizer(model_architecture, model_path):
107
+ tokenizer = AutoTokenizer.from_pretrained(model_architecture)
108
+ base_model = AutoModel.from_pretrained(model_architecture)
109
+
110
+ model = CodeBERTBinaryClassifier(base_model)
111
+ # model = model.to(device)
112
+
113
+ # Load the model
114
+ # model = CodeBERTBinaryClassifier(base_model)
115
+ model.load_state_dict(torch.load(model_path))
116
+ model = model.to(device)
117
+
118
+ return model, tokenizer
models/java_classifier.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cb0fa45719a7bddfc6fbe3e64eb1f83b41bbfba4e17d74370b8da1b02036341
3
+ size 499068174
models/python_classifier.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6925f2f2faaf6d80ad821b4f2593630ef00271363ff39ebb28f2e5b7f2657948
3
+ size 499068174
requirements.txt ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ altair==5.5.0
2
+ attrs==24.2.0
3
+ blinker==1.9.0
4
+ cachetools==5.5.0
5
+ certifi==2024.8.30
6
+ charset-normalizer==3.4.0
7
+ click==8.1.7
8
+ filelock==3.16.1
9
+ fsspec==2024.10.0
10
+ gitdb==4.0.11
11
+ GitPython==3.1.43
12
+ huggingface-hub==0.26.5
13
+ idna==3.10
14
+ Jinja2==3.1.4
15
+ jsonschema==4.23.0
16
+ jsonschema-specifications==2024.10.1
17
+ markdown-it-py==3.0.0
18
+ MarkupSafe==3.0.2
19
+ mdurl==0.1.2
20
+ mpmath==1.3.0
21
+ narwhals==1.16.0
22
+ networkx==3.4.2
23
+ numpy==2.2.0
24
+ nvidia-cublas-cu12==12.4.5.8
25
+ nvidia-cuda-cupti-cu12==12.4.127
26
+ nvidia-cuda-nvrtc-cu12==12.4.127
27
+ nvidia-cuda-runtime-cu12==12.4.127
28
+ nvidia-cudnn-cu12==9.1.0.70
29
+ nvidia-cufft-cu12==11.2.1.3
30
+ nvidia-curand-cu12==10.3.5.147
31
+ nvidia-cusolver-cu12==11.6.1.9
32
+ nvidia-cusparse-cu12==12.3.1.170
33
+ nvidia-nccl-cu12==2.21.5
34
+ nvidia-nvjitlink-cu12==12.4.127
35
+ nvidia-nvtx-cu12==12.4.127
36
+ packaging==24.2
37
+ pandas==2.2.3
38
+ pillow==11.0.0
39
+ protobuf==5.29.1
40
+ pyarrow==18.1.0
41
+ pydeck==0.9.1
42
+ Pygments==2.18.0
43
+ python-dateutil==2.9.0.post0
44
+ pytz==2024.2
45
+ PyYAML==6.0.2
46
+ referencing==0.35.1
47
+ regex==2024.11.6
48
+ requests==2.32.3
49
+ rich==13.9.4
50
+ rpds-py==0.22.3
51
+ safetensors==0.4.5
52
+ setuptools==75.6.0
53
+ six==1.17.0
54
+ smmap==5.0.1
55
+ streamlit==1.40.2
56
+ sympy==1.13.1
57
+ tenacity==9.0.0
58
+ tokenizers==0.21.0
59
+ toml==0.10.2
60
+ torch==2.5.1
61
+ tornado==6.4.2
62
+ tqdm==4.67.1
63
+ transformers==4.47.0
64
+ triton==3.1.0
65
+ typing_extensions==4.12.2
66
+ tzdata==2024.2
67
+ urllib3==2.2.3
68
+ watchdog==6.0.0