import torch import torch.nn as nn import torch.optim as optim import re from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, Trainer, TrainingArguments from torch.utils.data import DataLoader, Dataset device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # device = torch.device('cpu') def remove_java_comments(code): # Remove single-line comments (//) code = re.sub(r'//.*', '', code) # Remove multi-line comments (/* ... */) code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL) return code def remove_python_comments(code): # Remove single-line comments (#) code = re.sub(r'#.*', '', code) # Remove multi-line comments (""" ... """ or ''' ... ''') code = re.sub(r'""".*?"""', '', code, flags=re.DOTALL) code = re.sub(r"'''.*?'''", '', code, flags=re.DOTALL) return code # Model with Binary Classifier class CodeBERTBinaryClassifier(nn.Module): def __init__(self, encoder_model, hidden_size=256, num_layers=2): super(CodeBERTBinaryClassifier, self).__init__() self.encoder = encoder_model self.classifier = nn.Sequential( nn.Dropout(0.3), # Dropout with 30% nn.Linear(self.encoder.config.hidden_size, 128), # Hidden layer with 128 units nn.BatchNorm1d(128), # Batch normalization for the hidden layer nn.ReLU(), # ReLU activation for the hidden layer nn.Dropout(0.3), # Dropout with 30% nn.Linear(128, 1) # Output layer with 1 unit ) def forward(self, input_ids, attention_mask): outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask) cls_output = outputs.last_hidden_state[:, 0, :] # [CLS] token representation logits = self.classifier(cls_output.detach()).squeeze(-1) # Squeeze for binary logit return logits, cls_output def infer_single_sample(code_text, model, tokenizer, language='java'): # Ensure model is in evaluation mode model.eval() # Remove comments from the code (assuming the same preprocessing as during training) if language == 'python': code_text = remove_python_comments(code_text) else: code_text = remove_java_comments(code_text) # print(code_text) # Tokenize the input inputs = tokenizer.encode_plus( code_text, padding='max_length', max_length=512, truncation=True, return_tensors='pt' ) # Move inputs to the specified device input_ids = inputs['input_ids'].to(device) attention_mask = inputs['attention_mask'].to(device) # Disable gradient computation for inference with torch.no_grad(): # Get model prediction logits, _ = model(input_ids, attention_mask) # Apply sigmoid to get probability probability = torch.sigmoid(logits).cpu().item() # Classify based on 0.5 threshold predicted_label = 1 if probability > 0.5 else 0 return { 'probability': probability, 'predicted_label': predicted_label, 'interpretation': 'GPT-generated' if predicted_label == 0 else 'Human-written' } def load_model_and_tokenizer(model_architecture, model_path): tokenizer = AutoTokenizer.from_pretrained(model_architecture) base_model = AutoModel.from_pretrained(model_architecture) model = CodeBERTBinaryClassifier(base_model) # model = model.to(device) map_location = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.load_state_dict(torch.load(model_path, map_location=map_location)) model = model.to(map_location) return model, tokenizer