Abs6187's picture
Update app.py
e42c93d verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModel
from PIL import Image
from torchvision import transforms
import json
from torch import nn
from typing import Literal
# Define Multimodal Classifier
class MultimodalClassifier(nn.Module):
def __init__(
self,
text_encoder_id_or_path: str,
image_encoder_id_or_path: str,
projection_dim: int,
fusion_method: Literal["concat", "align", "cosine_similarity"] = "concat",
proj_dropout: float = 0.1,
fusion_dropout: float = 0.1,
num_classes: int = 1,
) -> None:
super().__init__()
self.fusion_method = fusion_method
self.projection_dim = projection_dim
self.num_classes = num_classes
# Text Encoder
self.text_encoder = AutoModel.from_pretrained(text_encoder_id_or_path)
self.text_projection = nn.Sequential(
nn.Linear(self.text_encoder.config.hidden_size, self.projection_dim),
nn.Dropout(proj_dropout),
)
# Image Encoder
self.image_encoder = AutoModel.from_pretrained(image_encoder_id_or_path, trust_remote_code=True)
self.image_encoder.classifier = nn.Identity() # Remove classification head
self.image_projection = nn.Sequential(
nn.Linear(512, self.projection_dim),
nn.Dropout(proj_dropout),
)
# Fusion Layer
fusion_input_dim = self.projection_dim * 2 if fusion_method == "concat" else self.projection_dim
self.fusion_layer = nn.Sequential(
nn.Dropout(fusion_dropout),
nn.Linear(fusion_input_dim, self.projection_dim),
nn.GELU(),
nn.Dropout(fusion_dropout),
)
# Classification Layer
self.classifier = nn.Linear(self.projection_dim, self.num_classes)
def forward(self, pixel_values: torch.Tensor, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
# Text Encoder Projection
full_text_features = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask, return_dict=True).last_hidden_state
full_text_features = full_text_features[:, 0, :] # CLS token
full_text_features = self.text_projection(full_text_features)
# Image Encoder Projection
resnet_image_features = self.image_encoder(pixel_values=pixel_values).last_hidden_state
resnet_image_features = resnet_image_features.mean(dim=[-2, -1]) # Global average pooling
resnet_image_features = self.image_projection(resnet_image_features)
# Fusion
if self.fusion_method == "concat":
fused_features = torch.cat([full_text_features, resnet_image_features], dim=-1)
else:
fused_features = full_text_features * resnet_image_features
# Classification
fused_features = self.fusion_layer(fused_features)
classification_output = self.classifier(fused_features)
return classification_output
# Load the model
def load_model():
with open("config.json", "r") as f:
config = json.load(f)
model = MultimodalClassifier(
text_encoder_id_or_path=config["text_encoder_id_or_path"],
image_encoder_id_or_path="microsoft/resnet-34",
projection_dim=config["projection_dim"],
fusion_method=config["fusion_method"],
proj_dropout=config["proj_dropout"],
fusion_dropout=config["fusion_dropout"],
num_classes=config["num_classes"]
)
checkpoint = torch.load("model_weights.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint, strict=False)
return model
# Load model and tokenizer
model = load_model()
model.eval()
text_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Image transform pipeline
image_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Prediction function
def predict(image: Image.Image, text: str) -> str:
# Process text input
text_inputs = text_tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=512
)
# Process image input
image_input = image_transform(image).unsqueeze(0) # Add batch dimension
# Model inference
with torch.no_grad():
classification_output = model(
pixel_values=image_input,
input_ids=text_inputs["input_ids"],
attention_mask=text_inputs["attention_mask"]
)
predicted_class = torch.sigmoid(classification_output).round().item()
return "Fake News" if predicted_class == 1 else "Real News"
# Gradio Interface
interface = gr.Interface(
fn=predict,
inputs=[
gr.Image(type="pil", label="Upload Related Image"),
gr.Textbox(lines=2, placeholder="Enter news text for classification...", label="Input Text")
],
outputs=gr.Label(label="Prediction"),
title="Fake News Detector",
description="Upload an image and provide text to classify the news as 'Fake' or 'Real'."
)
interface.launch()