Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import torch | |
import os | |
# Load the trained YOLOv5 model | |
model = torch.hub.load("ultralytics/yolov5", "custom", path="best.pt") # Load custom model | |
# Define the prediction function | |
def predict(image): | |
# Perform inference on the uploaded image | |
results = model(image) # Runs YOLOv5 model on the uploaded image | |
results_img = results.render()[0] # Get image with bounding boxes drawn | |
return Image.fromarray(results_img) | |
# Get example images from the images folder | |
def get_example_images(): | |
examples = [] | |
image_folder = "images" | |
for filename in os.listdir(image_folder): | |
if filename.lower().endswith(('.png', '.jpg', '.jpeg')): | |
examples.append(os.path.join(image_folder, filename)) | |
return examples | |
# Streamlit UI for Seatbelt Detection with YOLOv5 | |
st.title("Seatbelt Detection with YOLO") | |
st.markdown("Upload an image to detect Seat-Belt-Detection.") | |
# Allow the user to upload an image | |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_image is not None: | |
# Open the uploaded image using PIL | |
image = Image.open(uploaded_image) | |
# Display the uploaded image | |
st.image(image, caption="Uploaded Image", use_container_width=True) | |
# Run the model prediction | |
st.subheader("Prediction Results:") | |
result_image = predict(image) | |
# Display the result image with bounding boxes | |
st.image(result_image, caption="Detected Image", use_container_width=True) | |
# Optionally, show example images from the folder | |
if st.checkbox('Show example images'): | |
example_images = get_example_images() | |
for example_image in example_images: | |
img = Image.open(example_image) | |
st.image(img, caption=os.path.basename(example_image), use_container_width=True) | |