Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,50 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import tensorflow as tf
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
print("Path to model files:", model_path)
|
10 |
-
|
11 |
-
# Load the TensorFlow model
|
12 |
-
model = tf.saved_model.load(model_path)
|
13 |
|
|
|
14 |
def predict(image):
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
return image # Placeholder return
|
28 |
|
29 |
-
# Streamlit UI
|
30 |
-
st.title("
|
31 |
-
st.markdown("Upload an image
|
32 |
|
|
|
33 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
34 |
|
35 |
if uploaded_image is not None:
|
|
|
36 |
image = Image.open(uploaded_image)
|
|
|
|
|
37 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
38 |
-
|
|
|
39 |
st.subheader("Prediction Results:")
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from ultralytics import YOLO
|
|
|
3 |
from PIL import Image
|
4 |
+
import os
|
5 |
|
6 |
+
# Load the trained YOLOv8 model
|
7 |
+
model = YOLO("yolov8n.pt")
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Define the prediction function
|
10 |
def predict(image):
|
11 |
+
results = model(image) # Run YOLOv8 model on the uploaded image
|
12 |
+
results_img = results[0].plot() # Get image with bounding boxes
|
13 |
+
return Image.fromarray(results_img)
|
14 |
+
|
15 |
+
# Get example images from the images folder
|
16 |
+
def get_example_images():
|
17 |
+
examples = []
|
18 |
+
image_folder = "images"
|
19 |
+
for filename in os.listdir(image_folder):
|
20 |
+
if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
|
21 |
+
examples.append(os.path.join(image_folder, filename))
|
22 |
+
return examples
|
|
|
23 |
|
24 |
+
# Streamlit UI for Helmet Detection with YOLO
|
25 |
+
st.title("Helmet Detection with YOLOv8")
|
26 |
+
st.markdown("Upload an image to detect helmets.")
|
27 |
|
28 |
+
# Allow the user to upload an image
|
29 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
30 |
|
31 |
if uploaded_image is not None:
|
32 |
+
# Open the uploaded image using PIL
|
33 |
image = Image.open(uploaded_image)
|
34 |
+
|
35 |
+
# Display the uploaded image
|
36 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
37 |
+
|
38 |
+
# Run the model prediction
|
39 |
st.subheader("Prediction Results:")
|
40 |
+
result_image = predict(image)
|
41 |
+
|
42 |
+
# Display the result image with bounding boxes
|
43 |
+
st.image(result_image, caption="Detected Image", use_column_width=True)
|
44 |
+
|
45 |
+
# Optionally, show example images from the folder
|
46 |
+
if st.checkbox('Show example images'):
|
47 |
+
example_images = get_example_images()
|
48 |
+
for example_image in example_images:
|
49 |
+
img = Image.open(example_image)
|
50 |
+
st.image(img, caption=os.path.basename(example_image), use_column_width=True)
|