import streamlit as st from gradio_client import Client from st_audiorec import st_audiorec from gtts import gTTS from IPython.display import Audio, display # Constants TITLE = "AgriTure" DESCRIPTION = """ ---- This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "AgriaTure". This Model helps the farmers and scientists to develop the art of agriculture and farming. Hope this will be a Successful Project!!! ~Achyuth ---- """ # Initialize client whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/") # Function to convert text to speech using gTTS def text_to_speech(text, lang='en'): tts = gTTS(text=text, lang=lang, slow=False) tts.save("response.mp3") return "response.mp3" # Function to transcribe audio def transcribe(wav_path): return whisper_client.predict( wav_path, "transcribe", api_name="/predict" ) # Prediction function def predict(message, system_prompt='Your name is AgriaTure...', temperature=0.7, max_new_tokens=4096, Topp=0.5, Repetitionpenalty=1.2): with st.status("Starting client"): client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/") st.write("Requesting Audio Transcriber") with st.status("Requesting AgriTure v1"): st.write("Requesting API") response = client.predict( message, system_prompt, max_new_tokens, temperature, Topp, 500, Repetitionpenalty, api_name="/chat" ) st.write("Done") return response # Streamlit UI st.title(TITLE) st.write(DESCRIPTION) if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"], avatar=("🧑‍💻" if message["role"] == 'human' else '🦙')): st.markdown(message["content"]) textinput = st.chat_input("Ask AgriTure anything...") wav_audio_data = st_audiorec() if wav_audio_data is not None: with st.status("Transcribing audio..."): # save audio with open("audio.wav", "wb") as f: f.write(wav_audio_data) prompt = transcribe("audio.wav") st.write("Transcribed Given Audio ✔") st.chat_message("human", avatar="🌿").markdown(prompt) st.session_state.messages.append({"role": "human", "content": prompt}) # transcribe audio response = predict(message=prompt) with st.chat_message("assistant", avatar='🌿'): st.markdown(response) # Convert AI response to speech speech_file = text_to_speech(response) # Display assistant response in chat message container with st.chat_message("assistant", avatar='🌿'): st.markdown(response) # Play the generated speech display(Audio(speech_file, autoplay=True)) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response}) # React to user input if prompt := textinput: # Display user message in chat message container st.chat_message("human", avatar="🌿").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "human", "content": prompt}) response = predict(message=prompt) # Convert AI response to speech speech_file = text_to_speech(response) # Display assistant response in chat message container with st.chat_message("assistant", avatar='🌿'): st.markdown(response) # Play the generated speech display(Audio(speech_file, autoplay=True)) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})