File size: 4,759 Bytes
86b946a
 
43773a4
bfaeb19
 
 
86b946a
27e28a2
a197dc7
12071d0
d498f92
27e28a2
 
12071d0
86b946a
 
 
dfb995a
2e97054
b24c977
 
 
 
 
dfb995a
b24c977
dfb995a
 
b24c977
 
 
dfb995a
86b946a
2dfe1eb
b24c977
2dfe1eb
 
 
 
 
 
b24c977
 
 
 
 
 
 
 
2dfe1eb
 
 
 
86b946a
a197dc7
 
 
3405778
 
 
 
 
 
 
 
7681a13
f845a0a
 
b24c977
7681a13
124bb90
 
 
 
7681a13
b24c977
 
13ab025
124bb90
dfb995a
b24c977
3405778
39b53a1
dfb995a
b24c977
 
 
 
 
 
 
dfb995a
 
 
883b37e
f845a0a
883b37e
b24c977
883b37e
a197dc7
883b37e
b24c977
 
 
 
 
883b37e
39b53a1
e0d541d
b24c977
 
 
 
883b37e
3405778
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
from gradio_client import Client
from st_audiorec import st_audiorec
from gtts import gTTS
import os

# Constants
TITLE = "AgriTure"
DESCRIPTION = """
----
This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "AgriaTure". This Model helps the farmers and scientists to develop the art of agriculture and farming.
Hope this will be a Successful Project!!!
~Achyuth
----
"""

# Initialize client
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")

# Function to convert text to speech using gTTS
def text_to_speech(text, lang='en'):
    tts = gTTS(text=text, lang=lang, slow=False)
    tts.save("response.mp3")
    return "response.mp3"

# Function to transcribe audio
def transcribe(wav_path):
    return whisper_client.predict(
        wav_path,
        "transcribe",
        api_name="/predict"
    )

# Prediction function
def predict(message, system_prompt='Your name is AgriaTure. You are developed by Achyuth. Your developer is a 14-year old boy, who is intrested on AI and Machine Learning. Dont reveal your developers age, until the user asks for your developers age. When the user asks you for information, never exclaim the words, and directly come to point and answer to the user. You need to provide short text-answers, meaningful answers and directly to the point. Never miscalculate the calculations. You need to check and verify the answer and then provide to user, the correct answer. You need to provide accurate and correct information. If the user conveys with you in any language, you also should convey in the same language. For example, the user said, "నమస్తే", you need to reply "నమస్తే! నేను మీ అగ్రిట్యూర్‌ని. ఈ రోజు మీకు సహాయం చేయడానికి నేను ఇక్కడ ఉన్నాను. ఈ రోజు విషయం ఏమిటి? ఏదైనా విషయంలో ఏమైనా సందేహాలు ఉన్నాయా?". You need to definitely reply in the same language!', temperature=0.5, max_new_tokens=2048, Topp=0.5, Repetitionpenalty=1.2):
    with st.status("Starting client"):
        client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/")
        st.write("Requesting Audio Transcriber")
    with st.status("Requesting AgriTure v1"):
        st.write("Requesting API")
        response = client.predict(
            message,
            system_prompt,
            max_new_tokens,
            temperature,
            Topp,
            500,
            Repetitionpenalty,
            api_name="/chat"
        )
        st.write("Done")
        return response

# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)

if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"], avatar=("🧑‍💻" if message["role"] == 'human' else '🦙')):
        st.markdown(message["content"])

textinput = st.chat_input("Ask AgriTure anything...")
wav_audio_data = st_audiorec()

if wav_audio_data is not None:
    with st.status("Transcribing audio..."):
        # save audio
        with open("audio.wav", "wb") as f:
            f.write(wav_audio_data)
        prompt = transcribe("audio.wav")
        st.write("Transcribed Given Audio ✔")

    st.chat_message("human", avatar="🌿").markdown(prompt)
    st.session_state.messages.append({"role": "human", "content": prompt})

    # transcribe audio
    response = predict(message=prompt)

    with st.chat_message("assistant", avatar='🌿'):
        st.markdown(response)

    # Convert AI response to speech
    speech_file = text_to_speech(response)

    # Play the generated speech
    st.audio(speech_file, format="audio/mp3")

    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})

# React to user input
if prompt := textinput:
    # Display user message in chat message container
    st.chat_message("human", avatar="🌿").markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "human", "content": prompt})

    response = predict(message=prompt)

    # Convert AI response to speech
    speech_file = text_to_speech(response)

    # Display assistant response in chat message container
    with st.chat_message("assistant", avatar='🌿'):
        st.markdown(response)

    # Play the generated speech
    st.audio(speech_file, format="audio/mp3")

    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})