Spaces:
Running
on
Zero
Running
on
Zero
AdrienB134
commited on
Commit
•
86019ea
1
Parent(s):
8575432
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ import time
|
|
20 |
from PIL import Image
|
21 |
import torch
|
22 |
import subprocess
|
23 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
24 |
|
25 |
|
26 |
|
@@ -32,11 +32,7 @@ def model_inference(
|
|
32 |
images, text,
|
33 |
):
|
34 |
|
35 |
-
|
36 |
-
# print(images[0])
|
37 |
-
# images = Image.open(images[0][0])
|
38 |
-
# print(images)
|
39 |
-
# print(type(images))
|
40 |
images = [{"type": "image", "image": Image.open(image[0])} for image in images]
|
41 |
images.append({"type": "text", "text": text})
|
42 |
|
@@ -47,7 +43,7 @@ def model_inference(
|
|
47 |
#We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
48 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
49 |
"Qwen/Qwen2-VL-2B-Instruct",
|
50 |
-
attn_implementation="flash_attention_2", #doesn't work on zerogpu WTF?!
|
51 |
trust_remote_code=True,
|
52 |
torch_dtype=torch.bfloat16).to("cuda:0")
|
53 |
|
@@ -55,10 +51,6 @@ def model_inference(
|
|
55 |
min_pixels = 256*28*28
|
56 |
max_pixels = 1280*28*28
|
57 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
58 |
-
|
59 |
-
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
60 |
-
# min_pixels = 256*28*28
|
61 |
-
# max_pixels = 1280*28*28
|
62 |
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
63 |
|
64 |
messages = [
|
|
|
20 |
from PIL import Image
|
21 |
import torch
|
22 |
import subprocess
|
23 |
+
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
24 |
|
25 |
|
26 |
|
|
|
32 |
images, text,
|
33 |
):
|
34 |
|
35 |
+
|
|
|
|
|
|
|
|
|
36 |
images = [{"type": "image", "image": Image.open(image[0])} for image in images]
|
37 |
images.append({"type": "text", "text": text})
|
38 |
|
|
|
43 |
#We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
44 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
45 |
"Qwen/Qwen2-VL-2B-Instruct",
|
46 |
+
#attn_implementation="flash_attention_2", #doesn't work on zerogpu WTF?!
|
47 |
trust_remote_code=True,
|
48 |
torch_dtype=torch.bfloat16).to("cuda:0")
|
49 |
|
|
|
51 |
min_pixels = 256*28*28
|
52 |
max_pixels = 1280*28*28
|
53 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
|
|
|
|
|
|
|
|
54 |
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
55 |
|
56 |
messages = [
|