Spaces:
Running
on
Zero
Running
on
Zero
rev app
Browse files
app.py
CHANGED
@@ -1,49 +1,36 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
-
import torch
|
4 |
-
import spaces
|
5 |
|
6 |
-
# Initialize model
|
7 |
model = pipeline(
|
8 |
"automatic-speech-recognition",
|
9 |
model="Aekanun/whisper-small-hi",
|
10 |
-
device="
|
11 |
)
|
12 |
|
13 |
-
@spaces.GPU
|
14 |
def transcribe_speech(audio):
|
15 |
-
"""Speech transcription
|
16 |
try:
|
17 |
if audio is None:
|
18 |
return "กรุณาบันทึกเสียงก่อน"
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
# Process audio
|
26 |
-
result = model(audio, batch_size=1)
|
27 |
-
|
28 |
-
# Get text result
|
29 |
-
text = result["text"] if isinstance(result, dict) else result
|
30 |
-
|
31 |
-
# Move model back to CPU
|
32 |
-
model.model = model.model.to("cpu")
|
33 |
-
torch.cuda.empty_cache()
|
34 |
|
35 |
return text
|
36 |
|
37 |
except Exception as e:
|
38 |
-
# Make sure model is back on CPU in case of error
|
39 |
-
model.model = model.model.to("cpu")
|
40 |
-
torch.cuda.empty_cache()
|
41 |
return f"เกิดข้อผิดพลาด: {str(e)}"
|
42 |
|
43 |
# Create Gradio interface
|
44 |
demo = gr.Interface(
|
45 |
fn=transcribe_speech,
|
46 |
-
inputs=gr.Audio(type="filepath"),
|
47 |
outputs=gr.Textbox(label="ข้อความ"),
|
48 |
title="Thai Speech Transcription",
|
49 |
description="บันทึกเสียงเพื่อแปลงเป็นข้อความภาษาไทย",
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
|
|
|
|
4 |
|
5 |
+
# Initialize model and move to GPU
|
6 |
model = pipeline(
|
7 |
"automatic-speech-recognition",
|
8 |
model="Aekanun/whisper-small-hi",
|
9 |
+
device="cuda" # เปลี่ยนเป็น cuda เลย
|
10 |
)
|
11 |
|
12 |
+
@spaces.GPU # GPU function with default 60s duration
|
13 |
def transcribe_speech(audio):
|
14 |
+
"""Speech transcription function"""
|
15 |
try:
|
16 |
if audio is None:
|
17 |
return "กรุณาบันทึกเสียงก่อน"
|
18 |
|
19 |
+
# Process audio (model is already on GPU)
|
20 |
+
result = model(audio, batch_size=1)
|
21 |
|
22 |
+
# Get text result
|
23 |
+
text = result["text"] if isinstance(result, dict) else result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
return text
|
26 |
|
27 |
except Exception as e:
|
|
|
|
|
|
|
28 |
return f"เกิดข้อผิดพลาด: {str(e)}"
|
29 |
|
30 |
# Create Gradio interface
|
31 |
demo = gr.Interface(
|
32 |
fn=transcribe_speech,
|
33 |
+
inputs=gr.Audio(type="filepath"),
|
34 |
outputs=gr.Textbox(label="ข้อความ"),
|
35 |
title="Thai Speech Transcription",
|
36 |
description="บันทึกเสียงเพื่อแปลงเป็นข้อความภาษาไทย",
|