File size: 16,922 Bytes
10b5661 4ec8ad4 230a814 10b5661 85d2f78 c8ee59e e2524e7 00759b9 16d08c3 2799c43 e8734eb e2524e7 4ec8ad4 10b5661 e2524e7 10b5661 c8ee59e 4ec8ad4 85d2f78 e2524e7 00759b9 e2524e7 85d2f78 16d08c3 e47ba84 16d08c3 230a814 16d08c3 e47ba84 10b5661 5b19aee e47ba84 5b19aee e47ba84 5b19aee e47ba84 8bded3a e47ba84 5b19aee e47ba84 aa93317 e47ba84 1de2d2a 5b19aee 0b8f58d 5b19aee e47ba84 5b19aee 0b8f58d 5b19aee e47ba84 5b19aee e47ba84 aa93317 e47ba84 0b8f58d 5b19aee e47ba84 5b19aee 0b8f58d 5b19aee 88efb3f e47ba84 2d89b4e e47ba84 2d89b4e 64a9ffc 2d89b4e 4ec8ad4 e47ba84 2799c43 e47ba84 2799c43 e47ba84 2799c43 e47ba84 2799c43 e47ba84 2799c43 e47ba84 2799c43 e47ba84 86cf2b9 f51d4f8 417694d fa4f3c7 91132d3 fa4f3c7 91132d3 fa4f3c7 91132d3 fa4f3c7 91132d3 fa4f3c7 91132d3 c53efd6 91132d3 c53efd6 91132d3 9dd6b86 c53efd6 91132d3 a0b0991 91132d3 a0b0991 d57cf4a fa4f3c7 d57cf4a fa4f3c7 91132d3 fa4f3c7 f51d4f8 fa4f3c7 91132d3 fa4f3c7 d57cf4a fa4f3c7 91132d3 fa4f3c7 91132d3 fa4f3c7 91132d3 a0b0991 f51d4f8 c53efd6 a9a0441 91132d3 a9a0441 91132d3 a9a0441 91132d3 a9a0441 91132d3 a9a0441 91132d3 a9a0441 417694d 91132d3 417694d fa4f3c7 417694d 91132d3 d57cf4a 91132d3 fa4f3c7 d57cf4a fa4f3c7 d57cf4a 91132d3 c53efd6 2799c43 fa4f3c7 a9a0441 d57cf4a fa4f3c7 d57cf4a 2799c43 91132d3 10b5661 1f0ad8d 2799c43 1f0ad8d 2799c43 1f0ad8d f51d4f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
import os
import base64
import gradio as gr
from PIL import Image, ImageOps
import io
import json
from groq import Groq
import logging
import cv2
import numpy as np
import traceback
from datetime import datetime
import tempfile
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY is not set in environment variables")
raise ValueError("GROQ_API_KEY is not set")
# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY)
def encode_image(image):
try:
if isinstance(image, str): # If image is a file path
with open(image, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
elif isinstance(image, Image.Image): # If image is a PIL Image
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
elif isinstance(image, np.ndarray): # If image is a numpy array (from video)
is_success, buffer = cv2.imencode(".png", image)
if is_success:
return base64.b64encode(buffer).decode('utf-8')
else:
raise ValueError(f"Unsupported image type: {type(image)}")
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
raise
def resize_image(image, max_size=(800, 800)):
"""Resize image to avoid exceeding the API size limits."""
try:
image.thumbnail(max_size, Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Error resizing image: {str(e)}")
raise
def extract_frames_from_video(video, frame_points=[0, 0.5, 1], max_size=(800, 800)):
"""Extract key frames from the video at specific time points."""
cap = cv2.VideoCapture(video)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
duration = frame_count / fps
frames = []
for time_point in frame_points:
cap.set(cv2.CAP_PROP_POS_MSEC, time_point * duration * 1000)
ret, frame = cap.read()
if ret:
resized_frame = cv2.resize(frame, max_size)
frames.append(resized_frame)
cap.release()
return frames
def detect_snags(file):
"""Detect snags in a single file (image or video)"""
try:
file_type = file.name.split('.')[-1].lower()
if file_type in ['jpg', 'jpeg', 'png', 'bmp']:
return detect_snags_in_image(file)
elif file_type in ['mp4', 'avi', 'mov', 'webm']:
return detect_snags_in_video(file)
else:
return "Unsupported file type. Please upload an image or video file."
except Exception as e:
logger.error(f"Error detecting snags: {str(e)}")
return f"Error detecting snags: {str(e)}"
def detect_snags_in_image(image_file):
image = Image.open(image_file.name)
resized_image = resize_image(image)
image_data_url = f"data:image/png;base64,{encode_image(resized_image)}"
instruction = ("You are an AI assistant specialized in detecting snags in construction sites. "
"Your task is to analyze the image and describe what you see in the image. Then identify any construction defects, unfinished work, "
"or quality issues. List each snag, categorize it, and provide a brief description. "
"If no snags are detected, state that the area appears to be free of visible issues.")
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"{instruction}\n\nAnalyze this image for construction snags and provide a detailed report."
},
{
"type": "image_url",
"image_url": {
"url": image_data_url
}
}
]
}
]
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=1000,
top_p=1,
stream=False,
stop=None
)
return completion.choices[0].message.content
def detect_snags_in_video(video_file):
frames = extract_frames_from_video(video_file.name)
results = []
instruction = ("You are an AI assistant specialized in detecting snags in construction sites. "
"Your task is to analyze the video frame and describe what you see in the video. Then identify any construction defects, unfinished work, "
"or quality issues. List each snag, categorize it, and provide a brief description. "
"If no snags are detected, state that the area appears to be free of visible issues.")
for i, frame in enumerate(frames):
image_data_url = f"data:image/png;base64,{encode_image(frame)}"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"{instruction}\n\nAnalyze this frame from a video (Frame {i+1}/{len(frames)}) for construction snags and provide a detailed report."
},
{
"type": "image_url",
"image_url": {
"url": image_data_url
}
}
]
}
]
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=1000,
top_p=1,
stream=False,
stop=None
)
results.append(f"Frame {i+1} analysis:\n{completion.choices[0].message.content}\n\n")
return "\n".join(results)
def chat_about_snags(message, chat_history):
try:
messages = [
{"role": "system", "content": "You are an AI assistant specialized in analyzing construction site snags and answering questions about them. Use the information from the initial analysis to answer user queries."},
]
for human, ai in chat_history:
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
messages.append({"role": "user", "content": message})
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=500,
top_p=1,
stream=False,
stop=None
)
response = completion.choices[0].message.content
chat_history.append((message, response))
return "", chat_history
except Exception as e:
logger.error(f"Error during chat: {str(e)}")
return "", chat_history + [(message, f"Error: {str(e)}")]
def generate_snag_report(chat_history):
"""
Generate a snag report from the chat history.
"""
report = "Construction Site Snag Detection Report\n"
report += "=" * 40 + "\n"
report += f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
for i, (user, ai) in enumerate(chat_history, 1):
if user:
report += f"Query {i}:\n{user}\n\n"
if ai:
report += f"Analysis {i}:\n{ai}\n\n"
report += "-" * 40 + "\n"
return report
def download_snag_report(chat_history):
"""
Generate and provide a download link for the snag report.
"""
report = generate_snag_report(chat_history)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"snag_detection_report_{timestamp}.txt"
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file:
temp_file.write(report)
temp_file_path = temp_file.name
return temp_file_path
# Custom CSS for improved styling
custom_css = """
:root {
--primary-color: #FF6B35;
--secondary-color: #004E89;
--background-color: #F0F4F8;
--text-color: #333333;
--border-color: #CCCCCC;
}
body {
font-family: 'Arial', sans-serif;
background-color: var(--background-color);
color: var(--text-color);
}
.container {
max-width: 1200px;
margin: auto;
padding: 2rem;
background-color: white;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.header {
text-align: center;
margin-bottom: 2rem;
padding-bottom: 1rem;
border-bottom: 2px solid var(--primary-color);
}
.header h1 {
color: var(--secondary-color);
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
.subheader {
color: var(--text-color);
font-size: 1.1rem;
line-height: 1.4;
margin-bottom: 1.5rem;
text-align: center;
}
.file-upload-container {
border: 2px dashed var(--primary-color);
border-radius: 10px;
padding: 1rem;
text-align: center;
margin-bottom: 1rem;
background-color: #FFF5E6;
height: 120px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
.analyze-button {
background-color: var(--primary-color) !important;
color: white !important;
font-size: 1.1rem !important;
padding: 0.75rem 1.5rem !important;
border-radius: 5px !important;
width: 100%;
transition: background-color 0.3s ease;
}
.analyze-button:hover {
background-color: #E85A2A !important;
}
.info-row {
display: flex;
gap: 1rem;
margin-bottom: 1.5rem;
}
.info-box {
flex: 1;
background-color: #E6F3FF;
border: 1px solid var(--secondary-color);
border-radius: 5px;
padding: 1rem;
font-size: 0.9rem;
height: 200px;
overflow-y: auto;
}
.info-box h4 {
color: var(--secondary-color);
margin-top: 0;
margin-bottom: 0.5rem;
}
.info-box ul, .info-box ol {
margin: 0;
padding-left: 1.5rem;
}
.tag {
display: inline-block;
background-color: var(--primary-color);
color: white;
padding: 0.25rem 0.5rem;
border-radius: 3px;
font-size: 0.8rem;
margin-right: 0.5rem;
margin-bottom: 0.5rem;
}
.section-title {
color: var(--secondary-color);
font-size: 1.5rem;
margin-top: 2rem;
margin-bottom: 1rem;
border-bottom: 2px solid var(--primary-color);
padding-bottom: 0.5rem;
}
.chatbot {
border: 1px solid var(--border-color);
border-radius: 10px;
padding: 1rem;
height: 400px;
overflow-y: auto;
background-color: white;
}
.chat-input {
border: 1px solid var(--border-color);
border-radius: 5px;
padding: 0.75rem;
width: 100%;
font-size: 1rem;
}
.clear-button, .download-button {
background-color: var(--secondary-color) !important;
color: white !important;
font-size: 1rem !important;
padding: 0.5rem 1rem !important;
border-radius: 5px !important;
transition: background-color 0.3s ease;
}
.clear-button:hover, .download-button:hover {
background-color: #003D6E !important;
}
.download-report-container {
height: 60px;
display: flex;
align-items: center;
}
.footer {
margin-top: 2rem;
padding-top: 1rem;
border-top: 2px solid var(--primary-color);
display: flex;
justify-content: space-between;
align-items: center;
}
.groq-badge {
background-color: var(--secondary-color);
color: white;
padding: 8px 15px;
border-radius: 5px;
font-weight: bold;
font-size: 1rem;
display: inline-block;
}
.model-info {
color: var(--text-color);
font-size: 0.9rem;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
gr.HTML(
"""
<div class="container">
<div class="header">
<h1>🏗️ Construction Site Snag Detector</h1>
<p class="subheader">Enhance quality control and project management with AI-powered snag detection. Upload images or videos of your construction site to identify defects, unfinished work, and quality issues.</p>
</div>
"""
)
with gr.Row():
gr.HTML('<h3 class="section-title">Upload Files</h3>')
with gr.Row():
file_input = gr.File(
label="Upload Construction Site Images or Videos",
file_count="multiple",
type="filepath",
elem_classes="file-upload-container"
)
with gr.Row():
analyze_button = gr.Button("🔍 Detect Snags", elem_classes="analyze-button")
with gr.Row(elem_classes="info-row"):
with gr.Column(scale=1):
gr.HTML(
"""
<div class="info-box">
<h4>Supported File Types:</h4>
<ul>
<li>Images: JPG, JPEG, PNG, BMP</li>
<li>Videos: MP4, AVI, MOV, WEBM</li>
</ul>
</div>
"""
)
with gr.Column(scale=1):
gr.HTML(
"""
<div class="info-box">
<h4>Common Snags:</h4>
<div>
<span class="tag">Cracks</span>
<span class="tag">Leaks</span>
<span class="tag">Uneven Surfaces</span>
<span class="tag">Incomplete Work</span>
<span class="tag">Poor Finishes</span>
<span class="tag">Misalignments</span>
</div>
</div>
"""
)
with gr.Column(scale=1):
gr.HTML(
"""
<div class="info-box">
<h4>How to use:</h4>
<ol>
<li>Upload images or videos of your construction site</li>
<li>Click "Detect Snags" to analyze the files</li>
<li>Review the detected snags in the chat area</li>
<li>Ask follow-up questions about the snags or request more information</li>
<li>Download a comprehensive report for your records</li>
</ol>
</div>
"""
)
gr.HTML('<h3 class="section-title">Snag Detection Results</h3>')
chatbot = gr.Chatbot(
label="Snag Detection Results and Expert Chat",
elem_classes="chatbot",
show_share_button=False,
show_copy_button=False
)
with gr.Row():
msg = gr.Textbox(
label="Ask about detected snags or quality issues",
placeholder="E.g., 'What are the most critical snags detected?'",
show_label=False,
elem_classes="chat-input"
)
with gr.Row():
clear = gr.Button("🗑️ Clear Chat", elem_classes="clear-button")
download_button = gr.Button("📥 Download Report", elem_classes="download-button")
with gr.Row(elem_classes="download-report-container"):
report_file = gr.File(label="Download Snag Detection Report")
gr.HTML(
"""
<div class="footer">
<div class="groq-badge">Powered by Groq</div>
<div class="model-info">Model: llama-3.2-90b-vision-preview</div>
</div>
"""
)
def process_files(files):
results = []
for file in files:
result = detect_snags(file)
results.append((file.name, result))
return results
def update_chat(history, new_messages):
history = history or []
for title, content in new_messages:
history.append((None, f"File: {title}\n\n{content}"))
return history
analyze_button.click(
process_files,
inputs=[file_input],
outputs=[chatbot],
postprocess=lambda x: update_chat(chatbot.value, x)
)
msg.submit(chat_about_snags, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
download_button.click(
download_snag_report,
inputs=[chatbot],
outputs=[report_file]
)
# Launch the app
if __name__ == "__main__":
try:
iface.launch(debug=True)
except Exception as e:
logger.error(f"Error when trying to launch the interface: {str(e)}")
logger.error(traceback.format_exc())
print("Failed to launch the Gradio interface. Please check the logs for more information.")
|