import os import base64 import gradio as gr from PIL import Image import io import json from groq import Groq import logging # Set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Load environment variables GROQ_API_KEY = os.environ.get("GROQ_API_KEY") if not GROQ_API_KEY: logger.error("GROQ_API_KEY is not set in environment variables") raise ValueError("GROQ_API_KEY is not set") # Initialize Groq client client = Groq(api_key=GROQ_API_KEY) def encode_image(image): try: if isinstance(image, str): # If image is a file path with open(image, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') elif isinstance(image, Image.Image): # If image is a PIL Image buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode('utf-8') else: raise ValueError(f"Unsupported image type: {type(image)}") except Exception as e: logger.error(f"Error encoding image: {str(e)}") raise def analyze_construction_image(image): if image is None: logger.warning("No image provided") return [(None, "Error: No image uploaded")] try: logger.info("Starting image analysis") image_data_url = f"data:image/png;base64,{encode_image(image)}" messages = [ { "role": "user", "content": [ { "type": "text", "text": "Analyze this construction site image. Identify any issues or snags, categorize them, provide a detailed description, and suggest steps in numbered bullet points to resolve them. Format your response as a JSON object with keys 'snag_category', 'snag_description', and 'desnag_steps' (as an array)." }, { "type": "image_url", "image_url": { "url": image_data_url } } ] } ] logger.info("Sending request to Groq API") completion = client.chat.completions.create( model="llama-3.2-90b-vision-preview", messages=messages, temperature=0.7, max_tokens=1000, top_p=1, stream=False, response_format={"type": "json_object"}, stop=None ) logger.info("Received response from Groq API") result = completion.choices[0].message.content logger.debug(f"Raw API response: {result}") # Try to parse the result as JSON try: parsed_result = json.loads(result) except json.JSONDecodeError: logger.error("Failed to parse API response as JSON") return [(None, "Error: Invalid response format")] snag_category = parsed_result.get('snag_category', 'N/A') snag_description = parsed_result.get('snag_description', 'N/A') desnag_steps = '\n'.join(parsed_result.get('desnag_steps', ['N/A'])) logger.info("Analysis completed successfully") # Initialize chat history with analysis results chat_history = [ (None, f"Image Analysis Results:\n\nSnag Category: {snag_category}\n\nSnag Description: {snag_description}\n\nSteps to Desnag:\n{desnag_steps}") ] return chat_history except Exception as e: logger.error(f"Error during image analysis: {str(e)}") return [(None, f"Error: {str(e)}")] def chat_about_image(message, chat_history): try: # Prepare the conversation history for the API messages = [ {"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."}, ] # Add chat history to messages for human, ai in chat_history: if human: messages.append({"role": "user", "content": human}) if ai: messages.append({"role": "assistant", "content": ai}) # Add the new user message messages.append({"role": "user", "content": message}) # Make API call completion = client.chat.completions.create( model="llama-3.2-90b-vision-preview", messages=messages, temperature=0.7, max_tokens=500, top_p=1, stream=False, stop=None ) response = completion.choices[0].message.content chat_history.append((message, response)) return "", chat_history except Exception as e: logger.error(f"Error during chat: {str(e)}") return "", chat_history + [(message, f"Error: {str(e)}")] # Create the Gradio interface with gr.Blocks() as iface: gr.Markdown("# Construction Image Analyzer with Chat") with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(type="pil", label="Upload Construction Image") analyze_button = gr.Button("Analyze Image") with gr.Column(scale=2): chatbot = gr.Chatbot(label="Analysis Results and Chat") msg = gr.Textbox(label="Ask a question about the image and press Enter") clear = gr.Button("Clear Chat") analyze_button.click( analyze_construction_image, inputs=[image_input], outputs=[chatbot] ) msg.submit(chat_about_image, [msg, chatbot], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) # Launch the app if __name__ == "__main__": iface.launch(debug=True)