Spaces:
Runtime error
Runtime error
Afrinetwork7
commited on
Commit
•
aa48ffa
1
Parent(s):
03f9951
Update whisper_jax/layers.py
Browse files- whisper_jax/layers.py +65 -0
whisper_jax/layers.py
CHANGED
@@ -56,6 +56,71 @@ NdInitializer = Callable[[PRNGKey, Shape, DType, InitializerAxis, InitializerAxi
|
|
56 |
default_embed_init = nn.initializers.variance_scaling(1.0, "fan_in", "normal", out_axis=0)
|
57 |
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def dot_product_attention(
|
60 |
query: Array,
|
61 |
key: Array,
|
|
|
56 |
default_embed_init = nn.initializers.variance_scaling(1.0, "fan_in", "normal", out_axis=0)
|
57 |
|
58 |
|
59 |
+
# ------------------------------------------------------------------------------
|
60 |
+
# Temporary inlined JAX N-d initializer code
|
61 |
+
# TODO(levskaya): remove once new JAX release is out.
|
62 |
+
# ------------------------------------------------------------------------------
|
63 |
+
def _compute_fans(shape: jax.core.NamedShape, in_axis=-2, out_axis=-1):
|
64 |
+
"""Inlined JAX `nn.initializer._compute_fans`."""
|
65 |
+
if isinstance(in_axis, int):
|
66 |
+
in_size = shape[in_axis]
|
67 |
+
else:
|
68 |
+
in_size = int(np.prod([shape[i] for i in in_axis]))
|
69 |
+
if isinstance(out_axis, int):
|
70 |
+
out_size = shape[out_axis]
|
71 |
+
else:
|
72 |
+
out_size = int(np.prod([shape[i] for i in out_axis]))
|
73 |
+
receptive_field_size = shape.total / in_size / out_size
|
74 |
+
fan_in = in_size * receptive_field_size
|
75 |
+
fan_out = out_size * receptive_field_size
|
76 |
+
return fan_in, fan_out
|
77 |
+
|
78 |
+
|
79 |
+
def variance_scaling(scale, mode, distribution, in_axis=-2, out_axis=-1, dtype=jnp.float_):
|
80 |
+
"""Inlined JAX `nn.initializer.variance_scaling`."""
|
81 |
+
|
82 |
+
def init(key, shape, dtype=dtype):
|
83 |
+
return jnp.zeros(shape, dtype=dtype)
|
84 |
+
dtype = jax.dtypes.canonicalize_dtype(dtype)
|
85 |
+
shape = jax.core.as_named_shape(shape)
|
86 |
+
fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
|
87 |
+
if mode == "fan_in":
|
88 |
+
denominator = fan_in
|
89 |
+
elif mode == "fan_out":
|
90 |
+
denominator = fan_out
|
91 |
+
elif mode == "fan_avg":
|
92 |
+
denominator = (fan_in + fan_out) / 2
|
93 |
+
else:
|
94 |
+
raise ValueError("invalid mode for variance scaling initializer: {}".format(mode))
|
95 |
+
variance = jnp.array(scale / denominator, dtype=dtype)
|
96 |
+
|
97 |
+
if distribution == "truncated_normal":
|
98 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
99 |
+
stddev = jnp.sqrt(variance) / jnp.array(0.87962566103423978, dtype)
|
100 |
+
return random.truncated_normal(key, -2, 2, shape, dtype) * stddev
|
101 |
+
elif distribution == "normal":
|
102 |
+
return random.normal(key, shape, dtype) * jnp.sqrt(variance)
|
103 |
+
elif distribution == "uniform":
|
104 |
+
return random.uniform(key, shape, dtype, -1) * jnp.sqrt(3 * variance)
|
105 |
+
else:
|
106 |
+
raise ValueError("invalid distribution for variance scaling " "initializer: {}".format(distribution))
|
107 |
+
|
108 |
+
return init
|
109 |
+
|
110 |
+
|
111 |
+
# ------------------------------------------------------------------------------
|
112 |
+
|
113 |
+
|
114 |
+
def nd_dense_init(scale, mode, distribution):
|
115 |
+
"""Initializer with in_axis, out_axis set at call time."""
|
116 |
+
|
117 |
+
def init_fn(key, shape, dtype, in_axis, out_axis):
|
118 |
+
fn = variance_scaling(scale, mode, distribution, in_axis, out_axis)
|
119 |
+
return fn(key, shape, dtype)
|
120 |
+
|
121 |
+
return init_fn
|
122 |
+
|
123 |
+
|
124 |
def dot_product_attention(
|
125 |
query: Array,
|
126 |
key: Array,
|