import os import joblib import pandas as pd from typing import Any, Dict, List from imblearn.over_sampling import SMOTE from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import gradio as gr # Constants for directories and file names MODEL_DIR = 'models' DATA_DIR = 'datasets' DATA_FILE = 'cleaned_transaction_dataset.csv' MODEL_NAMES = [ 'LGBM Classifier', 'CatBoost Classifier', 'XGBoost Classifier', ] # Load dataset data_path = os.path.join(DATA_DIR, DATA_FILE) df = pd.read_csv(data_path) # Load models def load_models(model_names: List[str]) -> Dict[str, Any]: """Load machine learning models from disk.""" models = {} for name in model_names: path = os.path.join(MODEL_DIR, f"{name.replace(' ', '')}.joblib") try: models[name] = joblib.load(path) except Exception as e: print(f"Error loading model {name}: {str(e)}") return models models = load_models(MODEL_NAMES) # Prepare features and target X = df.drop(columns=['FLAG']) y = df['FLAG'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=123) # Standardize the features scaler = StandardScaler().fit(X_train) # Prediction and metrics evaluation function def calculate_metrics(y_true, y_pred, average_type='binary'): """Calculate and return accuracy, recall, F1, and precision scores.""" acc = accuracy_score(y_true, y_pred) rec = recall_score(y_true, y_pred, average=average_type) f1 = f1_score(y_true, y_pred, average=average_type) prec = precision_score(y_true, y_pred, average=average_type) return acc, rec, f1, prec def load_and_predict(input_data): try: # Scale the input sample using the already-fitted scaler sample_trans = scaler.transform(input_data) # Using SMOTE to handle class imbalance X_resampled, y_resampled = SMOTE(random_state=123).fit_resample(scaler.transform(X_train), y_train) results = [] for name, model in models.items(): flag_pred = model.predict(sample_trans) y_resampled_pred = model.predict(X_resampled) acc, rec, f1, prec = calculate_metrics(y_resampled, y_resampled_pred) results.append({ 'Model': name, 'Predicted Fraud': 'Yes' if flag_pred[0] == 1 else 'No', 'Accuracy %': acc * 100, 'Recall %': rec * 100, 'F1 %': f1 * 100, 'Precision %': prec * 100 }) return pd.DataFrame(results).sort_values(by='Accuracy %', ascending=False) except Exception as e: return f"An error occurred during prediction: {str(e)}" # Gradio interface def predict(avg_min_sent, avg_min_received, time_diff, sent_tnx, received_tnx, num_created_contracts, max_value_received, avg_value_received, avg_value_sent, total_sent, total_balance, erc20_received, erc20_sent, erc20_sent_contract, erc20_unique_sent, erc20_unique_received): input_features = [ avg_min_sent, avg_min_received, time_diff, sent_tnx, received_tnx, num_created_contracts, max_value_received, avg_value_received, avg_value_sent, total_sent, total_balance, erc20_received, erc20_sent, erc20_sent_contract, erc20_unique_sent, erc20_unique_received ] input_data = pd.DataFrame([input_features]) results_df = load_and_predict(input_data) return results_df # Gradio inputs based on the features you have inputs = [ gr.Number(label="Avg min between sent tnx", value=df["Avg min between sent tnx"].mean()), gr.Number(label="Avg min between received tnx", value=df["Avg min between received tnx"].mean()), gr.Number(label="Time difference between first and last (mins)", value=df["Time difference between first and last (mins)"].mean()), gr.Number(label="Sent tnx", value=df["Sent tnx"].mean()), gr.Number(label="Received tnx", value=df["Received tnx"].mean()), gr.Number(label="Number of created contracts", value=int(df["Number of created contracts"].mean())), gr.Number(label="Max value received", value=df["Max value received"].mean()), gr.Number(label="Avg value received", value=df["Avg value received"].mean()), gr.Number(label="Avg value sent", value=df["Avg value sent"].mean()), gr.Number(label="Total either sent", value=df["Total either sent"].mean()), gr.Number(label="Total either balance", value=df["Total either balance"].mean()), gr.Number(label="ERC20 total either received", value=df["ERC20 total either received"].mean()), gr.Number(label="ERC20 total either sent", value=df["ERC20 total either sent"].mean()), gr.Number(label="ERC20 total either sent contract", value=df["ERC20 total either sent contract"].mean()), gr.Number(label="ERC20 unique sent address", value=df["ERC20 unique sent address"].mean()), gr.Number(label="ERC20 unique received token name", value=df["ERC20 unique received token name"].mean()), ] output = gr.Dataframe(label="Prediction Results") # Create the Gradio interface gr.Interface( fn=predict, inputs=inputs, outputs=output, title="Fraud Detection Etherium Prediction App", description="This application predicts fraud in Ethereum transactions using multiple machine learning models.", theme="compact" ).launch()