File size: 21,416 Bytes
169f166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import gradio as gr
from huggingface_hub import HfApi
from unsloth import FastLanguageModel, is_bfloat16_supported
from unsloth.chat_templates import get_chat_template, train_on_responses_only

from trl import SFTTrainer
from transformers import TrainingArguments, TrainerCallback, DataCollatorForSeq2Seq
import torch
from datasets import load_dataset
import time
import psutil
import platform
import os

hf_user = None
try:
    hfApi = HfApi()
    hf_user = hfApi.whoami()["name"]
except Exception as e:
    hf_user = "not logged in"

def get_human_readable_size(size, decimal_places=2):
    for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
        if size < 1024.0:
            break
        size /= 1024.0
    return f"{size:.{decimal_places}f} {unit}"


# get cpu stats
disk_stats = psutil.disk_usage('.')
print(get_human_readable_size(disk_stats.total))
cpu_info = platform.processor()
print(cpu_info)
os_info = platform.platform()
print(os_info)

memory = psutil.virtual_memory()

# Dropdown options
model_options = [
    "unsloth/Meta-Llama-3.1-8B-bnb-4bit",
    "unsloth/Llama-3.2-1B-bnb-4bit",
    "unsloth/Llama-3.2-1B-Instruct-bnb-4bit",
    "unsloth/Llama-3.2-3B-bnb-4bit",
    "unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
    "unsloth/mistral-7b-v0.3-bnb-4bit",      # New Mistral v3 2x faster!
    "unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
    "unsloth/llama-3-8b-bnb-4bit",           # Llama-3 15 trillion tokens model 2x faster!
    "unsloth/llama-3-8b-Instruct-bnb-4bit",
    "unsloth/llama-3-70b-bnb-4bit",
    "unsloth/Phi-3-mini-4k-instruct",        # Phi-3 2x faster!
    "unsloth/Phi-3-medium-4k-instruct",
    "unsloth/mistral-7b-bnb-4bit",
    "unsloth/gemma-2-9b-bnb-4bit",
    "unsloth/gemma-2-9b-bnb-4bit-instruct",
    "unsloth/gemma-2-27b-bnb-4bit",          # Gemma 2x faster!
    "unsloth/gemma-2-27b-bnb-4bit-instruct",          # Gemma 2x faster!
    "unsloth/Qwen2-1.5B-bnb-4bit",         
    "unsloth/Qwen2-1.5B-bnb-4bit-instruct",         
    "unsloth/Qwen2-7B-bnb-4bit",          
    "unsloth/Qwen2-7B-bnb-4bit-instruct",          
    "unsloth/Qwen2-72B-bnb-4bit",         
    "unsloth/Qwen2-72B-bnb-4bit-instruct",         
    "unsloth/yi-6b-bnb-4bit",          
    "unsloth/yi-34b-bnb-4bit",        
]
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)

running_on_hf = False
if os.getenv("SYSTEM", None) == "spaces":
    running_on_hf = True

system_info = f"""\

- **System:** {os_info}

- **CPU:** {cpu_info} **Memory:** {get_human_readable_size(memory.free)} free of {get_human_readable_size(memory.total)}

- **GPU:** {gpu_stats.name} ({max_memory} GB)

- **Disk:** {get_human_readable_size(disk_stats.free)} free of {get_human_readable_size(disk_stats.total)}

- **Hugging Face:** {running_on_hf}

"""

model=None
tokenizer = None
dataset = None
max_seq_length = 2048

class PrinterCallback(TrainerCallback):
    step = 0
    def __init__(self, progress):
        self.progress = progress
    def on_log(self, args, state, control, logs=None, **kwargs):
        _ = logs.pop("total_flos", None)
        if state.is_local_process_zero:
            #print(logs)
            pass
    def on_step_end(self, args, state, control, **kwargs):
        if state.is_local_process_zero:
            self.step = state.global_step
            self.progress(self.step/60, desc=f"Training {self.step}/60")
            #print("**Step ", state.global_step)

    


def formatting_prompts_func(examples, prompt):
    global tokenizer
    instructions = examples["instruction"]
    inputs       = examples["input"]
    outputs      = examples["output"]
    
    texts = []
    for instruction, input, output in zip(instructions, inputs, outputs):
        conversation = [
            {
                "role": "system",
                "content": instruction + tokenizer.eos_token
            },
            {
                "role": "user",
                "content": input + tokenizer.eos_token
            },
            {
                "role": "assistant",
                "content": output + tokenizer.eos_token
            }
        ]
        text = tokenizer.apply_chat_template(
            conversation, tokenize=False, add_generation_prompt=False
        )
        
        texts.append(text)
    
    return { "text" : texts }

def load_model(initial_model_name, load_in_4bit, max_sequence_length, hub_token):
    global model, tokenizer, max_seq_length
    dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
    max_seq_length = max_sequence_length
    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name = initial_model_name,
        max_seq_length = max_sequence_length,
        dtype = dtype,
        load_in_4bit = load_in_4bit,
        token = f"{hub_token}", # use one if using gated models like meta-llama/Llama-2-7b-hf
    )
    tokenizer = get_chat_template(
        tokenizer,
        chat_template="llama-3.1",
    )
    return f"Model {initial_model_name} loaded, using {max_sequence_length} as max sequence length.", gr.update(visible=True, interactive=True), gr.update(interactive=True),gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)

def load_data(dataset_name, data_template_style, data_template):
    global dataset
    dataset = load_dataset(dataset_name, split = "train")
    dataset = dataset.map(lambda examples: formatting_prompts_func(examples, data_template), batched=True)
    
    return f"Data loaded {len(dataset)} records loaded.", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True)

def inference(prompt, input_text):
    FastLanguageModel.for_inference(model) # Enable native 2x faster inference
    inputs = tokenizer(
    [
        prompt.format(
            "Continue the fibonnaci sequence.", # instruction
            "1, 1, 2, 3, 5, 8", # input
            "", # output - leave this blank for generation!
        )
    ], return_tensors = "pt").to("cuda")

    outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
    result = tokenizer.batch_decode(outputs)
    return result[0], gr.update(visible=True, interactive=True)

def save_model(model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub, progress=gr.Progress()):
    global model, tokenizer

    print("Starting save_model function")
    print(f"Model name: {model_name}")
    print(f"Hub model name: {hub_model_name}")
    print(f"GGUF 16bit: {gguf_16bit}, GGUF 8bit: {gguf_8bit}, GGUF 4bit: {gguf_4bit}")
    print(f"Merge 16bit: {merge_16bit}, Merge 4bit: {merge_4bit}, Just LoRA: {just_lora}")
    print(f"Push to hub: {push_to_hub}")
    
    quants = []
    current_quant = 0

    if gguf_custom:
        gguf_custom_value = gguf_custom_value
        quants.append(gguf_custom_value)
        print(f"Custom GGUF value: {gguf_custom_value}")
    else:
        gguf_custom_value = None
    
    if gguf_16bit:
        quants.append("f16")
    if gguf_8bit:
        quants.append("q8_0")
    if gguf_4bit:
        quants.append("q4_k_m")
    
    if merge_16bit:
        print("Merging model to 16bit")
        progress(current_quant/len(quants), desc=f"Pushing model merged 16bit {model_name} to HuggingFace Hub")
        model.save_pretrained_merged(
            "model",
            tokenizer,
            save_method="merged_16bit",
        )
        if push_to_hub:
            print("Pushing merged 16bit model to HuggingFace Hub")
            model.push_to_hub_merged(hub_model_name, tokenizer, save_method="merged_16bit", token=hub_token)

    elif merge_4bit:
        print("Merging model to 4bit")
        progress(current_quant/len(quants), desc=f"Pushing model merged 4bit {model_name} to HuggingFace Hub")
        model.save_pretrained_merged(
            "model",
            tokenizer,
            save_method="merged_4bit_forced",
        )
        if push_to_hub:
            print("Pushing merged 4bit model to HuggingFace Hub")
            model.push_to_hub_merged(hub_model_name, tokenizer, save_method="merged_4bit_forced",  token=hub_token)

    elif just_lora:
        print("Saving just LoRA")
        progress(current_quant/len(quants), desc=f"Pushing model merged lora {model_name} to HuggingFace Hub")
        model.save_pretrained_merged(
            "model",
            tokenizer,
            save_method="lora",
        )
        if push_to_hub:
            print("Pushing LoRA model to HuggingFace Hub")
            model.push_to_hub_merged(hub_model_name, tokenizer, save_method="lora",  token=hub_token)

    if push_to_hub:
        current_quant = 0
        for q in quants:
            print(f"Pushing model with quantization {q} to HuggingFace Hub")
            progress(current_quant/len(quants), desc=f"Pushing model {model_name} with {q} to HuggingFace Hub")
            model.push_to_hub_gguf(hub_model_name, tokenizer, quantization_method=q, token=hub_token)
            current_quant += 1
    print("Model saved successfully")
    return "Model saved", gr.update(visible=True, interactive=True)

def username(profile: gr.OAuthProfile | None):
    hf_user = profile["name"] if profile else "not logged in"
    return hf_user

# Create the Gradio interface
with gr.Blocks(title="Unsloth fine-tuning") as demo:
    if (running_on_hf):
        gr.LoginButton()
    # logged_user = gr.Markdown(f"**User:** {hf_user}")
    #demo.load(username, inputs=None, outputs=logged_user)
    with gr.Row():
        with gr.Column(scale=0.5):
            gr.Image("unsloth.png", width="300px", interactive=False, show_download_button=False, show_label=False, show_share_button=False)
        with gr.Column(min_width="550px", scale=1):
            gr.Markdown(system_info) 
        with gr.Column(min_width="250px", scale=0.3):
            gr.Markdown(f"**Links:**\n\n* [Unsloth Hub](https://huggingface.co/unsloth)\n\n* [Unsloth Docs](http://docs.unsloth.com/)\n\n* [Unsloth GitHub](https://github.com/unslothai/unsloth)")
    with gr.Tab("Base Model Parameters"):

        with gr.Row():
            initial_model_name = gr.Dropdown(choices=model_options, label="Select Base Model", allow_custom_value=True)
            load_in_4bit = gr.Checkbox(label="Load 4bit model", value=True)

        gr.Markdown("### Target Model Parameters")
        with gr.Row():
            max_sequence_length = gr.Slider(minimum=128, value=512, step=64, maximum=128*1024, interactive=True, label="Max Sequence Length")
        load_btn = gr.Button("Load")
        output = gr.Textbox(label="Model Load Status", value="Model not loaded", interactive=False)
        gr.Markdown("---")

    with gr.Tab("Data Preparation"):
        with gr.Row():
            dataset_name = gr.Textbox(label="Dataset Name", value="yahma/alpaca-cleaned")
            data_template_style = gr.Dropdown(label="Template", choices=["alpaca","custom"], value="alpaca",  allow_custom_value=True)
        with gr.Row():
            data_template =  gr.TextArea(label="Data Template", value="""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.



### Instruction:

{}



### Input:

{}



### Response:

{}""")
        gr.Markdown("---")
        output_load_data = gr.Textbox(label="Data Load Status", value="Data not loaded", interactive=False)
        load_data_btn = gr.Button("Load Dataset", interactive=True)
        load_data_btn.click(load_data, inputs=[dataset_name, data_template_style, data_template], outputs=[output_load_data, load_data_btn])

    with gr.Tab("Fine-Tuning"):
        gr.Markdown("""### Fine-Tuned Model Parameters""")
        with gr.Row():
            model_name = gr.Textbox(label="Model Name", value=initial_model_name.value, interactive=True)

        gr.Markdown("""### Lora Parameters""")

        with gr.Row():
            lora_r = gr.Number(label="R", value=16, interactive=True)
            lora_alpha = gr.Number(label="Lora Alpha", value=16, interactive=True)
            lora_dropout = gr.Number(label="Lora Dropout", value=0.1, interactive=True)

        gr.Markdown("---")
        gr.Markdown("""### Training Parameters""")
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    per_device_train_batch_size = gr.Number(label="Per Device Train Batch Size", value=2, interactive=True)
                    warmup_steps = gr.Number(label="Warmup Steps", value=5, interactive=True)
                    max_steps = gr.Number(label="Max Steps", value=60, interactive=True)
                    gradient_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=4, interactive=True)
                with gr.Row():
                    logging_steps = gr.Number(label="Logging Steps", value=1, interactive=True)
                    log_to_tensorboard = gr.Checkbox(label="Log to Tensorboard", value=True, interactive=True)

                with gr.Row():
                #     optim = gr.Dropdown(choices=["adamw_8bit", "adamw", "sgd"], label="Optimizer", value="adamw_8bit")
                    learning_rate = gr.Number(label="Learning Rate", value=2e-4, interactive=True)

                # with gr.Row():
                    weight_decay = gr.Number(label="Weight Decay", value=0.01, interactive=True)
                    # lr_scheduler_type = gr.Dropdown(choices=["linear", "cosine", "constant"], label="LR Scheduler Type", value="linear")
        gr.Markdown("---")

        with gr.Row():
            seed = gr.Number(label="Seed", value=3407, interactive=True)
            output_dir = gr.Textbox(label="Output Directory", value="outputs", interactive=True)
        gr.Markdown("---")

        train_output = gr.Textbox(label="Training Status", value="Model not trained", interactive=False)
        train_btn = gr.Button("Train", visible=True)

        def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropout: float, per_device_train_batch_size: int, warmup_steps: int, max_steps: int,

                gradient_accumulation_steps: int, logging_steps: int, log_to_tensorboard: bool, learning_rate, weight_decay, seed: int, output_dir, progress= gr.Progress()):
            global model, tokenizer
            print(f"$$$ Training model {model_name} with {lora_r} R, {lora_alpha} alpha, {lora_dropout} dropout, {per_device_train_batch_size} per device train batch size, {warmup_steps} warmup steps, {max_steps} max steps, {gradient_accumulation_steps} gradient accumulation steps, {logging_steps} logging steps, {log_to_tensorboard} log to tensorboard, {learning_rate} learning rate, {weight_decay} weight decay, {seed} seed, {output_dir} output dir")
            iseed = seed
            model = FastLanguageModel.get_peft_model(
                model,
                r = lora_r,
                target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                                "gate_proj", "up_proj", "down_proj",],
                lora_alpha = lora_alpha,
                lora_dropout = lora_dropout,
                bias = "none",
                use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
                random_state=iseed,
                use_rslora = False,  # We support rank stabilized LoRA
                loftq_config = None, # And LoftQ
            )
            progress(0.0, desc="Loading Trainer")
            time.sleep(1)
            trainer = SFTTrainer(
                model = model,
                tokenizer = tokenizer,
                train_dataset = dataset,
                dataset_text_field="text",
                max_seq_length=max_seq_length,
                data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer),
                dataset_num_proc = 2,
                packing = False, # Can make training 5x faster for short sequences.
                callbacks = [PrinterCallback(progress)],
                args = TrainingArguments(
                    per_device_train_batch_size = per_device_train_batch_size,
                    gradient_accumulation_steps = gradient_accumulation_steps,
                    warmup_steps = warmup_steps,
                    max_steps = 60, # Set num_train_epochs = 1 for full training runs
                    learning_rate = learning_rate,
                    fp16 = not is_bfloat16_supported(),
                    bf16 = is_bfloat16_supported(),
                    logging_steps = logging_steps,
                    optim = "adamw_8bit",
                    weight_decay = weight_decay,
                    lr_scheduler_type = "linear",
                    seed = iseed,
                    report_to="tensorboard" if log_to_tensorboard else None,
                    output_dir = output_dir
                ),
            )
            trainer = train_on_responses_only(
                trainer,
                instruction_part="<|start_header_id|>user<|end_header_id|>\n\n",
                response_part="<|start_header_id|>assistant<|end_header_id|>\n\n",
            )
            trainer.train()
            progress(1, desc="Training completed")
            time.sleep(1)
            return "Model trained 100%",gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=True), gr.update(interactive=True)


        train_btn.click(train_model, inputs=[model_name, lora_r, lora_alpha, lora_dropout, per_device_train_batch_size, warmup_steps, max_steps, gradient_accumulation_steps, logging_steps, log_to_tensorboard, learning_rate, weight_decay, seed, output_dir], outputs=[train_output, train_btn])

    with gr.Tab("Save & Push Options"):

        with gr.Row():
            gr.Markdown("### Merging Options")
            with gr.Column():
                merge_16bit = gr.Checkbox(label="Merge to 16bit", value=False, interactive=True)
                merge_4bit = gr.Checkbox(label="Merge to 4bit", value=False, interactive=True)
                just_lora = gr.Checkbox(label="Just LoRA Adapter", value=False, interactive=True)
        gr.Markdown("---")

        with gr.Row():
            gr.Markdown("### GGUF Options")
            with gr.Column():
                gguf_16bit = gr.Checkbox(label="Quantize to f16", value=False, interactive=True)
                gguf_8bit = gr.Checkbox(label="Quantize to 8bit (Q8_0)", value=False, interactive=True)
                gguf_4bit = gr.Checkbox(label="Quantize to 4bit (q4_k_m)", value=False, interactive=True)
            with gr.Column():
                gguf_custom = gr.Checkbox(label="Custom", value=False, interactive=True)
                gguf_custom_value = gr.Textbox(label="", value="Q5_K", interactive=True)
        gr.Markdown("---")

        with gr.Row():
            gr.Markdown("### Hugging Face Hub Options")
            push_to_hub = gr.Checkbox(label="Push to Hub", value=False, interactive=True)
            with gr.Column():
                hub_model_name = gr.Textbox(label="Hub Model Name", value=f"username/model_name", interactive=True)
                hub_token = gr.Textbox(label="Hub Token", interactive=True, type="password")
        gr.Markdown("---")
            
        # with gr.Row():
        #     gr.Markdown("### Ollama options")
        #     with gr.Column():
        #         ollama_create_local = gr.Checkbox(label="Create in Ollama (local)", value=False, interactive=True)
        #         ollama_push_to_hub = gr.Checkbox(label="Push to Ollama", value=False, interactive=True)
        #     with gr.Column():
        #         ollama_model_name = gr.Textbox(label="Ollama Model Name", value="user/model_name")
        #         ollama_pub_key = gr.Button("Ollama Pub Key")    
        save_output = gr.Markdown("---")
        save_button = gr.Button("Save Model", visible=True, interactive=True)
        save_button.click(save_model, inputs=[model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub], outputs=[save_output, save_button])

    with gr.Tab("Inference"):
        with gr.Row():
            input_text = gr.Textbox(label="Input Text", lines=4, value="""\

Continue the fibonnaci sequence.

# instruction

1, 1, 2, 3, 5, 8

# input

""", interactive=True)
            output_text = gr.Textbox(label="Output Text", lines=4, value="", interactive=False)

        inference_button = gr.Button("Inference", visible=True, interactive=True)
        inference_button.click(inference, inputs=[data_template, input_text], outputs=[output_text, inference_button])
    load_btn.click(load_model, inputs=[initial_model_name, load_in_4bit, max_sequence_length, hub_token], outputs=[output, load_btn, train_btn, initial_model_name, load_in_4bit, max_sequence_length])

demo.launch()