File size: 21,416 Bytes
169f166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import gradio as gr
from huggingface_hub import HfApi
from unsloth import FastLanguageModel, is_bfloat16_supported
from unsloth.chat_templates import get_chat_template, train_on_responses_only
from trl import SFTTrainer
from transformers import TrainingArguments, TrainerCallback, DataCollatorForSeq2Seq
import torch
from datasets import load_dataset
import time
import psutil
import platform
import os
hf_user = None
try:
hfApi = HfApi()
hf_user = hfApi.whoami()["name"]
except Exception as e:
hf_user = "not logged in"
def get_human_readable_size(size, decimal_places=2):
for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
if size < 1024.0:
break
size /= 1024.0
return f"{size:.{decimal_places}f} {unit}"
# get cpu stats
disk_stats = psutil.disk_usage('.')
print(get_human_readable_size(disk_stats.total))
cpu_info = platform.processor()
print(cpu_info)
os_info = platform.platform()
print(os_info)
memory = psutil.virtual_memory()
# Dropdown options
model_options = [
"unsloth/Meta-Llama-3.1-8B-bnb-4bit",
"unsloth/Llama-3.2-1B-bnb-4bit",
"unsloth/Llama-3.2-1B-Instruct-bnb-4bit",
"unsloth/Llama-3.2-3B-bnb-4bit",
"unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
"unsloth/llama-3-8b-Instruct-bnb-4bit",
"unsloth/llama-3-70b-bnb-4bit",
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
"unsloth/Phi-3-medium-4k-instruct",
"unsloth/mistral-7b-bnb-4bit",
"unsloth/gemma-2-9b-bnb-4bit",
"unsloth/gemma-2-9b-bnb-4bit-instruct",
"unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster!
"unsloth/gemma-2-27b-bnb-4bit-instruct", # Gemma 2x faster!
"unsloth/Qwen2-1.5B-bnb-4bit",
"unsloth/Qwen2-1.5B-bnb-4bit-instruct",
"unsloth/Qwen2-7B-bnb-4bit",
"unsloth/Qwen2-7B-bnb-4bit-instruct",
"unsloth/Qwen2-72B-bnb-4bit",
"unsloth/Qwen2-72B-bnb-4bit-instruct",
"unsloth/yi-6b-bnb-4bit",
"unsloth/yi-34b-bnb-4bit",
]
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
running_on_hf = False
if os.getenv("SYSTEM", None) == "spaces":
running_on_hf = True
system_info = f"""\
- **System:** {os_info}
- **CPU:** {cpu_info} **Memory:** {get_human_readable_size(memory.free)} free of {get_human_readable_size(memory.total)}
- **GPU:** {gpu_stats.name} ({max_memory} GB)
- **Disk:** {get_human_readable_size(disk_stats.free)} free of {get_human_readable_size(disk_stats.total)}
- **Hugging Face:** {running_on_hf}
"""
model=None
tokenizer = None
dataset = None
max_seq_length = 2048
class PrinterCallback(TrainerCallback):
step = 0
def __init__(self, progress):
self.progress = progress
def on_log(self, args, state, control, logs=None, **kwargs):
_ = logs.pop("total_flos", None)
if state.is_local_process_zero:
#print(logs)
pass
def on_step_end(self, args, state, control, **kwargs):
if state.is_local_process_zero:
self.step = state.global_step
self.progress(self.step/60, desc=f"Training {self.step}/60")
#print("**Step ", state.global_step)
def formatting_prompts_func(examples, prompt):
global tokenizer
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
conversation = [
{
"role": "system",
"content": instruction + tokenizer.eos_token
},
{
"role": "user",
"content": input + tokenizer.eos_token
},
{
"role": "assistant",
"content": output + tokenizer.eos_token
}
]
text = tokenizer.apply_chat_template(
conversation, tokenize=False, add_generation_prompt=False
)
texts.append(text)
return { "text" : texts }
def load_model(initial_model_name, load_in_4bit, max_sequence_length, hub_token):
global model, tokenizer, max_seq_length
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
max_seq_length = max_sequence_length
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = initial_model_name,
max_seq_length = max_sequence_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = f"{hub_token}", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
tokenizer = get_chat_template(
tokenizer,
chat_template="llama-3.1",
)
return f"Model {initial_model_name} loaded, using {max_sequence_length} as max sequence length.", gr.update(visible=True, interactive=True), gr.update(interactive=True),gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
def load_data(dataset_name, data_template_style, data_template):
global dataset
dataset = load_dataset(dataset_name, split = "train")
dataset = dataset.map(lambda examples: formatting_prompts_func(examples, data_template), batched=True)
return f"Data loaded {len(dataset)} records loaded.", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True)
def inference(prompt, input_text):
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
prompt.format(
"Continue the fibonnaci sequence.", # instruction
"1, 1, 2, 3, 5, 8", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
result = tokenizer.batch_decode(outputs)
return result[0], gr.update(visible=True, interactive=True)
def save_model(model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub, progress=gr.Progress()):
global model, tokenizer
print("Starting save_model function")
print(f"Model name: {model_name}")
print(f"Hub model name: {hub_model_name}")
print(f"GGUF 16bit: {gguf_16bit}, GGUF 8bit: {gguf_8bit}, GGUF 4bit: {gguf_4bit}")
print(f"Merge 16bit: {merge_16bit}, Merge 4bit: {merge_4bit}, Just LoRA: {just_lora}")
print(f"Push to hub: {push_to_hub}")
quants = []
current_quant = 0
if gguf_custom:
gguf_custom_value = gguf_custom_value
quants.append(gguf_custom_value)
print(f"Custom GGUF value: {gguf_custom_value}")
else:
gguf_custom_value = None
if gguf_16bit:
quants.append("f16")
if gguf_8bit:
quants.append("q8_0")
if gguf_4bit:
quants.append("q4_k_m")
if merge_16bit:
print("Merging model to 16bit")
progress(current_quant/len(quants), desc=f"Pushing model merged 16bit {model_name} to HuggingFace Hub")
model.save_pretrained_merged(
"model",
tokenizer,
save_method="merged_16bit",
)
if push_to_hub:
print("Pushing merged 16bit model to HuggingFace Hub")
model.push_to_hub_merged(hub_model_name, tokenizer, save_method="merged_16bit", token=hub_token)
elif merge_4bit:
print("Merging model to 4bit")
progress(current_quant/len(quants), desc=f"Pushing model merged 4bit {model_name} to HuggingFace Hub")
model.save_pretrained_merged(
"model",
tokenizer,
save_method="merged_4bit_forced",
)
if push_to_hub:
print("Pushing merged 4bit model to HuggingFace Hub")
model.push_to_hub_merged(hub_model_name, tokenizer, save_method="merged_4bit_forced", token=hub_token)
elif just_lora:
print("Saving just LoRA")
progress(current_quant/len(quants), desc=f"Pushing model merged lora {model_name} to HuggingFace Hub")
model.save_pretrained_merged(
"model",
tokenizer,
save_method="lora",
)
if push_to_hub:
print("Pushing LoRA model to HuggingFace Hub")
model.push_to_hub_merged(hub_model_name, tokenizer, save_method="lora", token=hub_token)
if push_to_hub:
current_quant = 0
for q in quants:
print(f"Pushing model with quantization {q} to HuggingFace Hub")
progress(current_quant/len(quants), desc=f"Pushing model {model_name} with {q} to HuggingFace Hub")
model.push_to_hub_gguf(hub_model_name, tokenizer, quantization_method=q, token=hub_token)
current_quant += 1
print("Model saved successfully")
return "Model saved", gr.update(visible=True, interactive=True)
def username(profile: gr.OAuthProfile | None):
hf_user = profile["name"] if profile else "not logged in"
return hf_user
# Create the Gradio interface
with gr.Blocks(title="Unsloth fine-tuning") as demo:
if (running_on_hf):
gr.LoginButton()
# logged_user = gr.Markdown(f"**User:** {hf_user}")
#demo.load(username, inputs=None, outputs=logged_user)
with gr.Row():
with gr.Column(scale=0.5):
gr.Image("unsloth.png", width="300px", interactive=False, show_download_button=False, show_label=False, show_share_button=False)
with gr.Column(min_width="550px", scale=1):
gr.Markdown(system_info)
with gr.Column(min_width="250px", scale=0.3):
gr.Markdown(f"**Links:**\n\n* [Unsloth Hub](https://huggingface.co/unsloth)\n\n* [Unsloth Docs](http://docs.unsloth.com/)\n\n* [Unsloth GitHub](https://github.com/unslothai/unsloth)")
with gr.Tab("Base Model Parameters"):
with gr.Row():
initial_model_name = gr.Dropdown(choices=model_options, label="Select Base Model", allow_custom_value=True)
load_in_4bit = gr.Checkbox(label="Load 4bit model", value=True)
gr.Markdown("### Target Model Parameters")
with gr.Row():
max_sequence_length = gr.Slider(minimum=128, value=512, step=64, maximum=128*1024, interactive=True, label="Max Sequence Length")
load_btn = gr.Button("Load")
output = gr.Textbox(label="Model Load Status", value="Model not loaded", interactive=False)
gr.Markdown("---")
with gr.Tab("Data Preparation"):
with gr.Row():
dataset_name = gr.Textbox(label="Dataset Name", value="yahma/alpaca-cleaned")
data_template_style = gr.Dropdown(label="Template", choices=["alpaca","custom"], value="alpaca", allow_custom_value=True)
with gr.Row():
data_template = gr.TextArea(label="Data Template", value="""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}""")
gr.Markdown("---")
output_load_data = gr.Textbox(label="Data Load Status", value="Data not loaded", interactive=False)
load_data_btn = gr.Button("Load Dataset", interactive=True)
load_data_btn.click(load_data, inputs=[dataset_name, data_template_style, data_template], outputs=[output_load_data, load_data_btn])
with gr.Tab("Fine-Tuning"):
gr.Markdown("""### Fine-Tuned Model Parameters""")
with gr.Row():
model_name = gr.Textbox(label="Model Name", value=initial_model_name.value, interactive=True)
gr.Markdown("""### Lora Parameters""")
with gr.Row():
lora_r = gr.Number(label="R", value=16, interactive=True)
lora_alpha = gr.Number(label="Lora Alpha", value=16, interactive=True)
lora_dropout = gr.Number(label="Lora Dropout", value=0.1, interactive=True)
gr.Markdown("---")
gr.Markdown("""### Training Parameters""")
with gr.Row():
with gr.Column():
with gr.Row():
per_device_train_batch_size = gr.Number(label="Per Device Train Batch Size", value=2, interactive=True)
warmup_steps = gr.Number(label="Warmup Steps", value=5, interactive=True)
max_steps = gr.Number(label="Max Steps", value=60, interactive=True)
gradient_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=4, interactive=True)
with gr.Row():
logging_steps = gr.Number(label="Logging Steps", value=1, interactive=True)
log_to_tensorboard = gr.Checkbox(label="Log to Tensorboard", value=True, interactive=True)
with gr.Row():
# optim = gr.Dropdown(choices=["adamw_8bit", "adamw", "sgd"], label="Optimizer", value="adamw_8bit")
learning_rate = gr.Number(label="Learning Rate", value=2e-4, interactive=True)
# with gr.Row():
weight_decay = gr.Number(label="Weight Decay", value=0.01, interactive=True)
# lr_scheduler_type = gr.Dropdown(choices=["linear", "cosine", "constant"], label="LR Scheduler Type", value="linear")
gr.Markdown("---")
with gr.Row():
seed = gr.Number(label="Seed", value=3407, interactive=True)
output_dir = gr.Textbox(label="Output Directory", value="outputs", interactive=True)
gr.Markdown("---")
train_output = gr.Textbox(label="Training Status", value="Model not trained", interactive=False)
train_btn = gr.Button("Train", visible=True)
def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropout: float, per_device_train_batch_size: int, warmup_steps: int, max_steps: int,
gradient_accumulation_steps: int, logging_steps: int, log_to_tensorboard: bool, learning_rate, weight_decay, seed: int, output_dir, progress= gr.Progress()):
global model, tokenizer
print(f"$$$ Training model {model_name} with {lora_r} R, {lora_alpha} alpha, {lora_dropout} dropout, {per_device_train_batch_size} per device train batch size, {warmup_steps} warmup steps, {max_steps} max steps, {gradient_accumulation_steps} gradient accumulation steps, {logging_steps} logging steps, {log_to_tensorboard} log to tensorboard, {learning_rate} learning rate, {weight_decay} weight decay, {seed} seed, {output_dir} output dir")
iseed = seed
model = FastLanguageModel.get_peft_model(
model,
r = lora_r,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = lora_alpha,
lora_dropout = lora_dropout,
bias = "none",
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state=iseed,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
progress(0.0, desc="Loading Trainer")
time.sleep(1)
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field="text",
max_seq_length=max_seq_length,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer),
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
callbacks = [PrinterCallback(progress)],
args = TrainingArguments(
per_device_train_batch_size = per_device_train_batch_size,
gradient_accumulation_steps = gradient_accumulation_steps,
warmup_steps = warmup_steps,
max_steps = 60, # Set num_train_epochs = 1 for full training runs
learning_rate = learning_rate,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = logging_steps,
optim = "adamw_8bit",
weight_decay = weight_decay,
lr_scheduler_type = "linear",
seed = iseed,
report_to="tensorboard" if log_to_tensorboard else None,
output_dir = output_dir
),
)
trainer = train_on_responses_only(
trainer,
instruction_part="<|start_header_id|>user<|end_header_id|>\n\n",
response_part="<|start_header_id|>assistant<|end_header_id|>\n\n",
)
trainer.train()
progress(1, desc="Training completed")
time.sleep(1)
return "Model trained 100%",gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=True), gr.update(interactive=True)
train_btn.click(train_model, inputs=[model_name, lora_r, lora_alpha, lora_dropout, per_device_train_batch_size, warmup_steps, max_steps, gradient_accumulation_steps, logging_steps, log_to_tensorboard, learning_rate, weight_decay, seed, output_dir], outputs=[train_output, train_btn])
with gr.Tab("Save & Push Options"):
with gr.Row():
gr.Markdown("### Merging Options")
with gr.Column():
merge_16bit = gr.Checkbox(label="Merge to 16bit", value=False, interactive=True)
merge_4bit = gr.Checkbox(label="Merge to 4bit", value=False, interactive=True)
just_lora = gr.Checkbox(label="Just LoRA Adapter", value=False, interactive=True)
gr.Markdown("---")
with gr.Row():
gr.Markdown("### GGUF Options")
with gr.Column():
gguf_16bit = gr.Checkbox(label="Quantize to f16", value=False, interactive=True)
gguf_8bit = gr.Checkbox(label="Quantize to 8bit (Q8_0)", value=False, interactive=True)
gguf_4bit = gr.Checkbox(label="Quantize to 4bit (q4_k_m)", value=False, interactive=True)
with gr.Column():
gguf_custom = gr.Checkbox(label="Custom", value=False, interactive=True)
gguf_custom_value = gr.Textbox(label="", value="Q5_K", interactive=True)
gr.Markdown("---")
with gr.Row():
gr.Markdown("### Hugging Face Hub Options")
push_to_hub = gr.Checkbox(label="Push to Hub", value=False, interactive=True)
with gr.Column():
hub_model_name = gr.Textbox(label="Hub Model Name", value=f"username/model_name", interactive=True)
hub_token = gr.Textbox(label="Hub Token", interactive=True, type="password")
gr.Markdown("---")
# with gr.Row():
# gr.Markdown("### Ollama options")
# with gr.Column():
# ollama_create_local = gr.Checkbox(label="Create in Ollama (local)", value=False, interactive=True)
# ollama_push_to_hub = gr.Checkbox(label="Push to Ollama", value=False, interactive=True)
# with gr.Column():
# ollama_model_name = gr.Textbox(label="Ollama Model Name", value="user/model_name")
# ollama_pub_key = gr.Button("Ollama Pub Key")
save_output = gr.Markdown("---")
save_button = gr.Button("Save Model", visible=True, interactive=True)
save_button.click(save_model, inputs=[model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub], outputs=[save_output, save_button])
with gr.Tab("Inference"):
with gr.Row():
input_text = gr.Textbox(label="Input Text", lines=4, value="""\
Continue the fibonnaci sequence.
# instruction
1, 1, 2, 3, 5, 8
# input
""", interactive=True)
output_text = gr.Textbox(label="Output Text", lines=4, value="", interactive=False)
inference_button = gr.Button("Inference", visible=True, interactive=True)
inference_button.click(inference, inputs=[data_template, input_text], outputs=[output_text, inference_button])
load_btn.click(load_model, inputs=[initial_model_name, load_in_4bit, max_sequence_length, hub_token], outputs=[output, load_btn, train_btn, initial_model_name, load_in_4bit, max_sequence_length])
demo.launch() |