import base64 import json import ast import os import re import io import math import gradio as gr import oss2 from oss2.credentials import EnvironmentVariableCredentialsProvider from openai import OpenAI from datetime import datetime from PIL import ImageDraw # Define constants DESCRIPTION = "[UI-TARS](https://github.com/bytedance/UI-TARS)" client = OpenAI( base_url=os.environ.get("ENDPOINT_URL"), api_key=os.environ.get("API_KEY") ) prompt = "Output only the coordinate of one box in your response. " auth = oss2.ProviderAuthV4(EnvironmentVariableCredentialsProvider()) endpoint = 'oss-us-east-1.aliyuncs.com' region = "us-east-1" bucket = os.environ.get("BUCKET") bucket = oss2.Bucket(auth, endpoint, bucket, region=region) def draw_point_area(image, point): radius = min(image.width, image.height) // 15 x, y = round(point[0]/1000 * image.width), round(point[1]/1000 * image.height) ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), outline='red', width=2) ImageDraw.Draw(image).ellipse((x - 2, y - 2, x + 2, y + 2), fill='red') return image def resize_image(image): max_pixels = 6000 * 28 * 28 if image.width * image.height > max_pixels: max_pixels = 2700 * 28 * 28 else: max_pixels = 1340 * 28 * 28 resize_factor = math.sqrt(max_pixels / (image.width * image.height)) width, height = int(image.width * resize_factor), int(image.height * resize_factor) image = image.resize((width, height)) return image def upload_images(session_id, image, result_image, query): img_path = f"{session_id}.png" result_img_path = f"{session_id}-draw.png" metadata = dict( query=query, resize_image=img_path, result_image=result_img_path, session_id=session_id ) img_bytes = io.BytesIO() image.save(img_bytes, format="png") img_bytes = img_bytes.getvalue() bucket.put_object(img_path, img_bytes) rst_img_bytes = io.BytesIO() result_image.save(rst_img_bytes, format="png") rst_img_bytes = rst_img_bytes.getvalue() bucket.put_object(result_img_path, rst_img_bytes) bucket.put_object(f"{session_id}.json", json.dumps(metadata)) print("end upload images") def run_ui(image, query, session_id, is_example_image): click_xy = None images_during_iterations = [] # List to store images at each step width, height = image.width, image.height image = resize_image(image) bytes = io.BytesIO() image.save(bytes, format="png") base64_image = base64.standard_b64encode(bytes.getvalue()).decode("utf-8") messages = [ { "role": "user", "content": [ {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}, {"type": "text", "text": prompt + query}, ], } ] response = client.chat.completions.create(model="tgi", messages=messages, temperature=1.0, top_p=0.7, max_tokens=128, frequency_penalty=1, stream=False) output_text = response.choices[0].message.content pattern = r"\((\d+,\d+)\)" match = re.search(pattern, output_text) if match: coordinates = match.group(1) click_xy = ast.literal_eval(coordinates) result_image = draw_point_area(image, click_xy) images_during_iterations.append(result_image) click_xy = round(click_xy[0]/1000 * width), round(click_xy[1]/1000 * height) # TODO: async if is_example_image == "False": upload_images(session_id, image, result_image, query) return images_during_iterations, str(click_xy) def update_vote(vote_type, image, click_image, prompt, is_example): """upload bad cases to somewhere""" if vote_type == "upvote": return "Everything good" if is_example == "True": return "Do nothing for example" click_img_path = click_image[0] # webp format image.size # TODO: upload to some where return f"Thank you for your feedback!" examples = [ ["./examples/solitaire.png", "Play the solitaire collection", True], ["./examples/weather_ui.png", "Open map", True], ["./examples/football_live.png", "click team 1 win", True], ["./examples/windows_panel.png", "switch to documents", True], ["./examples/paint_3d.png", "rotate left", True], ["./examples/finder.png", "view files from airdrop", True], ["./examples/amazon.jpg", "Search bar at the top of the page", True], ["./examples/semantic.jpg", "Home", True], ["./examples/accweather.jpg", "Select May", True], ["./examples/arxiv.jpg", "Home", True], ["./examples/health.jpg", "text labeled by 2023/11/26", True], ["./examples/ios_setting.png", "Turn off Do not disturb.", True], ] title_markdown = (""" # UI-TARS Pioneering Automated GUI Interaction with Native Agents [[🤗Model](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT)] [[⌨️Code](https://github.com/bytedance/UI-TARS)] [[📑Paper](https://github.com/bytedance/UI-TARS/blob/main/UI_TARS_paper.pdf)] [🏄[Midscene (Browser Automation)](https://github.com/web-infra-dev/Midscene)] [🫨[Discord](https://discord.gg/txAE43ps)] """) tos_markdown = (""" ### Terms of use This demo is governed by the original license of UI-TARS. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, including hate speech, violence, pornography, deception, etc. (注:本演示受UI-TARS的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。) """) learn_more_markdown = (""" ### License Apache License 2.0 """) code_adapt_markdown = (""" ### Acknowledgments The app code is modified from [ShowUI](https://huggingface.co/spaces/showlab/ShowUI) """) block_css = """ #buttons button { min-width: min(120px,100%); } #chatbot img { max-width: 80%; max-height: 80vh; width: auto; height: auto; object-fit: contain; } """ def build_demo(): with gr.Blocks(title="UI-TARS Demo", theme=gr.themes.Default(), css=block_css) as demo: state_session_id = gr.State(value=None) gr.Markdown(title_markdown) with gr.Row(): with gr.Column(scale=3): imagebox = gr.Image(type="pil", label="Input Screenshot") textbox = gr.Textbox( show_label=True, placeholder="Enter an instruction and press Submit", label="Instruction", ) submit_btn = gr.Button(value="Submit", variant="primary") with gr.Column(scale=6): output_gallery = gr.Gallery(label="Output with click", object_fit="contain", preview=True) # output_gallery = gr.Gallery(label="Iterative Refinement") gr.HTML( """
Notice: The red point with a circle on the output image represents the predicted coordinates for a click.
""" ) with gr.Row(): output_coords = gr.Textbox(label="Final Coordinates") image_size = gr.Textbox(label="Image Size") gr.HTML( """Expected result or not? help us improve! ⬇️
""" ) with gr.Row(elem_id="action-buttons", equal_height=True): upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary") downvote_btn = gr.Button(value="👎 Wrong coordinates!", variant="secondary") clear_btn = gr.Button(value="🗑️ Clear", interactive=True) with gr.Column(scale=3): gr.Examples( examples=[[e[0], e[1]] for e in examples], inputs=[imagebox, textbox], outputs=[textbox], # Only update the query textbox examples_per_page=3, ) is_example_dropdown = gr.Dropdown( choices=["True", "False"], value="False", visible=False, label="Is Example Image", ) def set_is_example(query): for _, example_query, is_example in examples: if query.strip() == example_query.strip(): return str(is_example) # Return as string for Dropdown compatibility return "False" textbox.change( set_is_example, inputs=[textbox], outputs=[is_example_dropdown], ) def on_submit(image, query, is_example_image): if image is None: raise ValueError("No image provided. Please upload an image before submitting.") session_id = datetime.now().strftime("%Y%m%d_%H%M%S") images_during_iterations, click_coords = run_ui(image, query, session_id, is_example_image) return images_during_iterations, click_coords, session_id, f"{image.width}x{image.height}" submit_btn.click( on_submit, [imagebox, textbox, is_example_dropdown], [output_gallery, output_coords, state_session_id, image_size], ) clear_btn.click( lambda: (None, None, None, None, None, None), inputs=None, outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id, image_size], queue=False ) upvote_btn.click( lambda image, click_image, prompt, is_example: update_vote("upvote", image, click_image, prompt, is_example), inputs=[imagebox, output_gallery, textbox, is_example_dropdown], outputs=[], queue=False ) downvote_btn.click( lambda image, click_image, prompt, is_example: update_vote("downvote", image, click_image, prompt, is_example), inputs=[imagebox, output_gallery, textbox, is_example_dropdown], outputs=[], queue=False ) gr.Markdown(tos_markdown) gr.Markdown(learn_more_markdown) gr.Markdown(code_adapt_markdown) return demo if __name__ == "__main__": demo = build_demo() demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, debug=True, )