|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
import gradio as gr |
|
import numpy as np |
|
|
|
|
|
model_id = "vikhyatk/moondream2" |
|
revision = "2024-05-20" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, trust_remote_code=True, revision=revision |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) |
|
|
|
def analyze_image_direct(image, question): |
|
|
|
|
|
|
|
enc_image = model.encode_image(image) |
|
|
|
|
|
|
|
answer = model.answer_question(enc_image, question, tokenizer) |
|
|
|
return answer |
|
|
|
with gr.Blocks() as block: |
|
image = gr.inputs.Image(label="Image") |
|
question = gr.inputs.Textbox(label="Question") |
|
output = gr.outputs.Textbox(label="Answer") |
|
gr.Interface(fn=analyze_image_direct, inputs=[image, question], outputs=output).launch() |
|
|
|
block.launch() |
|
|