Spaces:
Running
Running
File size: 21,998 Bytes
bdafe83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import os
import re
import time
import json
import matplotlib.pyplot as plt
from openai import OpenAI
import multiprocessing
FONT_SIZE = 20
COLORS = ['#26547c', '#06d6a0', '#ef476f', '#ffd166']
openai_api_key = os.getenv("OPENAI_KEY")
# print(openai.api_key)
base_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/reviews'
save_base_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/classified_reason/'
with open('iter_prompt.txt', 'r') as f:
iter_prompt = f.read()
with open('classification_prompt.txt', 'r') as f:
classification_prompt = f.read()
with open('reason_library.txt', 'r') as f:
reason_library = f.read()
def get_gpt_response(prompt):
client = OpenAI(api_key=openai_api_key)
messages = [{'role': 'user', 'content': prompt}]
completion = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
temperature=0.7,
max_tokens=2000,
)
response = completion.choices[0].message.content
response = response.strip()
# time.sleep(5)
return response
def extract_review_from_real_data():
base_dir = '/home/v-qinlinzhao/agent4reviews/real_review/original_data'
result_dir = '/home/v-qinlinzhao/agent4reviews/real_review/extracted_real_review/'
# 目录为 ICLR202X/notes/xxx.json
# 将其中所有的json文件的review提取处理
for root, dirs, files in os.walk(base_dir):
for file in files:
if file.endswith('.json'):
with open(os.path.join(root, file), 'r') as f:
data = json.load(f)
reviews = []
data = data['details']['replies']
id = []
for d in data:
if d['id'] not in id:
id.append(d['id'])
# 2020-2021
if 'content' in d and 'review' in d['content']:
reviews.append(d['content']['review'])
# 2022
if 'content' in d and 'main_review' in d['content']:
reviews.append(d['content']['main_review'])
# 2023
if 'content' in d and 'strength_and_weaknesses' in d['content']:
reviews.append(d['content']['strength_and_weaknesses'])
# 将每个review分别存入到json文件中,命名格式为 {当前文件名}_{序号}.json
# 同时保持每个文件在原目录下相对路径
relative_dir = os.path.relpath(root, base_dir)
result_file_dir = os.path.join(result_dir, relative_dir)
os.makedirs(result_file_dir, exist_ok=True)
file_base_name = os.path.splitext(file)[0]
for i, review in enumerate(reviews):
result_file_name = f"{file_base_name}_{i}.json"
result_file_path = os.path.join(result_file_dir, result_file_name)
with open(result_file_path, 'w') as result_file:
json.dump({"review": review}, result_file, ensure_ascii=False, indent=4)
def extract_meta_review_from_simulated_data():
base_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/full_paper_discussion'
result_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/meta_review/'
# 目录为 ICLR202X/notes/xxx.json
# 将其中所有的json文件的review提取处理
for root, dirs, files in os.walk(base_dir):
for file in files:
if file.endswith('.json'):
with open(os.path.join(root, file), 'r') as f:
data = json.load(f)
# review在data['messages']中最后一个元素中的"content"中
review = data['messages'][-1]['content']
# write review into file, keep the abstract path
relative_dir = os.path.relpath(root, base_dir)
result_file_dir = os.path.join(result_dir, relative_dir)
os.makedirs(result_file_dir, exist_ok=True)
result_file_path = os.path.join(result_file_dir, file)
with open(result_file_path, 'w') as result_file:
json.dump({"meta_review": review}, result_file, ensure_ascii=False, indent=4)
# Select 1% of the data randomly, let GPT-4 summarize the reasons, and add them to the reason library if there are reasons that do not exist
def construct_reason_library():
base_dir = '/home/v-qinlinzhao/agent4reviews/paper_review_and_rebuttal/selected_files/'
json_files = []
for root, dirs, files in os.walk(base_dir):
for file in files:
if file.endswith('.json'):
json_files.append(os.path.join(root, file))
for file in json_files:
with open(file, 'r') as f:
data = json.load(f)
review = data['review']
prompt = iter_prompt.format(review=review,
reason_library=reason_library)
ans = get_gpt_response(prompt)
print(ans)
def analyze_reason_in_batch(json_files):
for file in json_files:
with open(file, 'r') as f:
data = json.load(f)
review = data['review']
prompt = classification_prompt.format(review=review)
res = get_gpt_response(prompt)
# 解析res的输出,将accept和reject的原因分别提取出来,写成json格式
# 依据该字符串分别抽取Accept和Reject的原因
reason_dict = {}
if 'Reject' in res:
accept_reason = re.search(r"Accept: (.+?);", res)
else:
accept_reason = re.search(r"Accept: (.+)", res)
reject_reason = re.search(r"Reject: (.+)", res)
# print(reject_reason)
if accept_reason:
accept_reason = accept_reason.group(1).split(',')
reason_dict['accept'] = []
for r in accept_reason:
r = r.strip()
if r in ['1', '2', '3', '4', '5']:
reason_dict['accept'].append(r)
if reject_reason:
reject_reason = reject_reason.group(1).split(',')
reason_dict['reject'] = []
for r in reject_reason:
r = r.strip()
if r in ['1', '2', '3', '4', '5', '6', '7']:
reason_dict['reject'].append(r)
# print(res)
relative_path = os.path.relpath(file, base_dir)
save_path = os.path.join(save_base_dir, relative_path)
save_dir = os.path.dirname(save_path)
# 首先找到原来目录的目录结构,然后在save_dir中按照该目录保存结果保存结果
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with open(save_path, 'w') as f:
json.dump(reason_dict, f, indent=4)
def convert_txt_to_json():
base_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/classified_meta_review_reason'
reason_count = {}
reason_total_count = {'accept': {}, 'reject': {}}
def process_directory(path, reason_dict):
# 迭代path下的内容
for item in os.listdir(path):
item_path = os.path.join(path, item)
if os.path.isdir(item_path):
# 如果是目录,递归处理
reason_dict[item] = {}
process_directory(item_path, reason_dict[item])
elif item.endswith('.txt'):
# 去除txt后缀
item_name = item.replace('.txt', '')
reason_dict[item_name] = {'accept': {}, 'reject': {}}
# 如果是txt文件,处理文件内容
with open(item_path, 'r') as f:
content = f.read()
# "Accept: 1,2,3; Reject: 3,4,7"
# 依据该字符串分别抽取Accept和Reject的原因
if 'Reject' in content:
accept_reason = re.search(r"Accept: (.+?);", content)
else:
accept_reason = re.search(r"Accept: (.+)", content)
reject_reason = re.search(r"Reject: (.+)", content)
# print(reject_reason)
if accept_reason:
accept_reason = accept_reason.group(1).split(',')
reason_dict[item_name]['accept'] = []
for r in accept_reason:
r = r.strip()
if r in ['1', '2', '3', '4', '5']:
if r not in reason_total_count['accept']:
reason_total_count['accept'][r] = 0
reason_total_count['accept'][r] += 1
reason_dict[item_name]['accept'].append(r)
if reject_reason:
reject_reason = reject_reason.group(1).split(',')
reason_dict[item_name]['reject'] = []
for r in reject_reason:
r = r.strip()
if r in ['1', '2', '3', '4', '5', '6', '7']:
if r not in reason_total_count['reject']:
reason_total_count['reject'][r] = 0
reason_total_count['reject'][r] += 1
reason_dict[item_name]['reject'].append(r)
process_directory(base_dir, reason_count)
# 将统计结果写入文件
with open('reason.json', 'w') as f:
json.dump(reason_count, f, indent=4)
# 计算accept 和 reject中每一类原因的占比
# reason_percentage = {'accept': {}, 'reject': {}}
# for key, value in reason_total_count.items():
# total = sum(value.values())
# for k, v in value.items():
# reason_percentage[key][k] = v / total
# with open('reason_count.json', 'w') as f:
# json.dump(reason_total_count, f, indent=4)
# with open('reason_percentage.json', 'w') as f:
# json.dump(reason_percentage, f, indent=4)
def count_reasons():
with open('../reason_result/reason.json', 'r') as f:
reason_count = json.load(f)
count = {}
for year, year_dict in reason_count.items():
count[year] = {}
for model, model_dict in year_dict.items():
count[year][model] = {}
for type, type_dict in model_dict.items():
count[year][model][type] = {}
count[year][model][type]['accept'] = {}
count[year][model][type]['reject'] = {}
# 只在type层面做统计就好了
for paper_id, paper_id_dict in type_dict.items():
for review_id, review_id_dict in paper_id_dict.items():
print(year, model, type, paper_id, review_id, review_id_dict)
# {'accept': {'1': 1, '2': 1, '5': 1}, 'reject': {'3': 1, '4': 1, '5': 1, '7': 1}}
if 'accept' in review_id_dict:
for accept_reason in review_id_dict['accept']:
if accept_reason not in count[year][model][type]['accept'] \
and accept_reason in ['1', '2', '3', '4', '5']:
count[year][model][type]['accept'][accept_reason] = 0
count[year][model][type]['accept'][accept_reason] += 1
if 'reject' in review_id_dict:
for reject_reason in review_id_dict['reject']:
if reject_reason not in count[year][model][type]['reject'] \
and reject_reason in ['1', '2', '3', '4', '5', '6', '7']:
count[year][model][type]['reject'][reject_reason] = 0
count[year][model][type]['reject'][reject_reason] += 1
with open('reason_count.json', 'w') as f:
json.dump(count, f, indent=4)
def calcu_reason_percentage_every_year():
with open('../reason_result/reason_count.json', 'r') as f:
reason_count = json.load(f)
distribution = {}
for year, year_dict in reason_count.items():
distribution[year] = {}
for model, model_dict in year_dict.items():
distribution[year][model] = {}
for type, type_dict in model_dict.items():
distribution[year][model][type] = {}
distribution[year][model][type]['accept'] = {}
distribution[year][model][type]['reject'] = {}
# 统计百分比,先将accept下面的count加起来,然后得到每个百分比
accept_sum = sum(type_dict['accept'].values())
for reason, count in type_dict['accept'].items():
distribution[year][model][type]['accept'][reason] = count / accept_sum
reject_sum = sum(type_dict['reject'].values())
for reason, count in type_dict['reject'].items():
distribution[year][model][type]['reject'][reason] = count / reject_sum
with open('reason_percentage.json', 'w') as f:
json.dump(distribution, f, indent=4)
def calcu_reason_percentage():
# 以每种类别为单位,计算每种类别下的accept和reject的百分比
with open('../reason_result/reason_count.json', 'r') as f:
reason_count = json.load(f)
count_dict = {}
for year, year_dict in reason_count.items():
for model, model_dict in year_dict.items():
for type, type_dict in model_dict.items():
count_dict[type] = {'accept': {}, 'reject': {}}
# 得到所有year和model的accept和reject的count
accept_count = type_dict['accept']
reject_count = type_dict['reject']
# 将accept中每一类原因进行累加
for reason, count in accept_count.items():
if reason not in count_dict[type]['accept']:
count_dict[type]['accept'][reason] = 0
count_dict[type]['accept'][reason] += count
for reason, count in reject_count.items():
if reason not in count_dict[type]['reject']:
count_dict[type]['reject'][reason] = 0
count_dict[type]['reject'][reason] += count
# 计算count_dict中accept和reject其中原因的百分比
reason_percentage = {}
for type, type_dict in count_dict.items():
reason_percentage[type] = {'accept': {}, 'reject': {}}
accept_sum = sum(type_dict['accept'].values())
for reason, count in type_dict['accept'].items():
reason_percentage[type]['accept'][reason] = count / accept_sum
reject_sum = sum(type_dict['reject'].values())
for reason, count in type_dict['reject'].items():
reason_percentage[type]['reject'][reason] = count / reject_sum
with open('reason_percentage.json', 'w') as f:
json.dump(reason_percentage, f, indent=4)
def draw_bar_chart(accept_or_reject, ax, type, name1, name2):
# accept_or_reject = 'accept'
x = {
"accept": ['Novelty', 'Significance', 'Theoretical', 'Clarity', 'Future'],
"reject": ['Novelty', 'Theoretical', 'Validation', 'Practicality', 'Limitations', 'Presentation', 'Related Work']
}
x_range = range(1, len(x[accept_or_reject])+1)
# 画出每一年的type1 和 type2两种type的比例图
with open('../reason_result/reason_percentage.json', 'r') as f:
reason_percentage = json.load(f)
# 取出其中的type1和type2两种type
type1 = reason_percentage[name1][accept_or_reject]
type2 = reason_percentage[name2][accept_or_reject]
# 按照key排序
type1 = dict(sorted(type1.items(), key=lambda x: int(x[0])))
type2 = dict(sorted(type2.items(), key=lambda x: int(x[0])))
# dict中key应该是1-7,如果有的Key没有,就加上这个key,value设置为0
for i in x_range:
if str(i) not in type1:
type1[str(i)] = 0
if str(i) not in type2:
type2[str(i)] = 0
width = 0.35 # 柱子的宽度
# fig, ax = plt.subplots()
ax.bar([i - width/2 for i in x_range], type1.values(), width, label=name1, color=COLORS[0], alpha=0.3)
ax.bar([i + width/2 for i in x_range], type2.values(), width, label=name2, color=COLORS[1], alpha=0.3)
ax.legend()
ax.set_xlabel('Reason', fontsize=FONT_SIZE)
# ax.set_ylabel('Percentage', fontsize=FONT_SIZE)
ax.set_title(type, fontsize=FONT_SIZE)
ax.set_xticks(x_range) # 设置x轴刻度为整数
ax.set_xticklabels(x[accept_or_reject], rotation=30)
# plt.savefig(f'reason_distribution_{type}.png')
# plt.close()
def draw_bar_chart_baseline(ax, baseline_or_ground, accept_or_reject):
# if baseline_or_ground == 'Baseline':
# with open('../simulated_review/reason_result/reason_percentage.json', 'r') as f:
# reason_percentage = json.load(f)
# type_data = reason_percentage['BASELINE'][accept_or_reject]
# elif baseline_or_ground == 'Ground Truth':
with open('reason_percentage.json', 'r') as f:
reason_percentage = json.load(f)
type_data = reason_percentage[baseline_or_ground][accept_or_reject]
x = {
"accept": ['Novelty', 'Significance', 'Theoretical', 'Clarity', 'Future'],
"reject": ['Novelty', 'Theoretical', 'Validation', 'Practicality', 'Limitations', 'Presentation', 'Related Work']
}
x_range = range(1, len(x[accept_or_reject])+1)
# 按照key排序
type_data = dict(sorted(type_data.items(), key=lambda x: int(x[0])))
# dict中key应该是1-7,如果有的Key没有,就加上这个key,value设置为0
for i in x_range:
if str(i) not in type_data:
type_data[str(i)] = 0
# 画图,将单一类型画到图上,选取颜色,设置透明度
width = 0.35 # 柱子的宽度
# fig, ax = plt.subplots()
ax.bar(x_range, type_data.values(), width, label=accept_or_reject, color=COLORS[0], alpha=0.7)
ax.legend()
ax.set_xlabel('Reason', fontsize=FONT_SIZE)
# ax.set_ylabel('Percentage', fontsize=FONT_SIZE)
ax.set_title(baseline_or_ground, fontsize=FONT_SIZE)
ax.set_xticks(x_range) # 设置x轴刻度为整数
ax.set_xticklabels(x[accept_or_reject], rotation=30)
# plt.savefig(f'{baseline_or_ground}_{accept_or_reject}_reason_distribution.pdf')
# plt.close()
def draw_reason_distribution(accept_or_reject):
type2name = {'accept': 'Acceptance', 'reject': 'Rejection'}
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
fig.suptitle(f'Distribution of {type2name[accept_or_reject]} Reasons', fontsize=FONT_SIZE)
# authoritarian_ACx1 inclusive_ACx1 conformist_ACx1
draw_bar_chart_baseline(axs[0], 'authoritarian_ACx1', accept_or_reject)
draw_bar_chart_baseline(axs[1], 'inclusive_ACx1', accept_or_reject)
draw_bar_chart_baseline(axs[2], 'conformist_ACx1', accept_or_reject)
# draw_bar_chart_baseline(axs[0], 'Baseline', accept_or_reject)
# draw_bar_chart_baseline(axs[1], 'Ground Truth', accept_or_reject)
# for i, (key, value) in enumerate(types.items()):
# if i == 3:
# break
# draw_bar_chart(accept_or_reject, axs[i], key, value[0], value[1])
axs[0].set_ylabel('Percentage', fontsize=FONT_SIZE)
plt.tight_layout()
plt.savefig(f'reason_distribution_AC_{accept_or_reject}.pdf')
plt.close()
if __name__ == "__main__":
# analysis_pipeline()
# convert_txt_to_json()
draw_reason_distribution('reject')
# if __name__ == "__main__":
# # get current path
# # print(os.getcwd())
# print("Start analysis...")
# json_files = []
# for root, dirs, files in os.walk(base_dir):
# for file in files:
# if file.endswith('.json'):
# json_files.append(os.path.join(root, file))
# # json_files = [f for f in json_files]
# # print(json_files)
# # 将其平均分为6份,每份分配给一个进程
# n = len(json_files)
# n_per_process = n // 6
# processes = []
# for i in range(6):
# start = i * n_per_process
# end = (i + 1) * n_per_process
# if i == 5:
# end = n
# p = multiprocessing.Process(target=analyze_reason_in_batch, args=(json_files[start:end], ))
# processes.append(p)
# p.start()
|