File size: 21,998 Bytes
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import os
import re
import time
import json
import matplotlib.pyplot as plt
from openai import OpenAI
import multiprocessing

FONT_SIZE = 20

COLORS = ['#26547c', '#06d6a0', '#ef476f', '#ffd166']

openai_api_key = os.getenv("OPENAI_KEY")
# print(openai.api_key)

base_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/reviews'
save_base_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/classified_reason/'

with open('iter_prompt.txt', 'r') as f:
    iter_prompt = f.read()
    
with open('classification_prompt.txt', 'r') as f:
    classification_prompt = f.read()

with open('reason_library.txt', 'r') as f:
    reason_library = f.read()

def get_gpt_response(prompt):
    client = OpenAI(api_key=openai_api_key)
    messages = [{'role': 'user', 'content': prompt}]
    completion = client.chat.completions.create(
            model="gpt-4-1106-preview",
            messages=messages,
            temperature=0.7,
            max_tokens=2000,
        )

    response = completion.choices[0].message.content
    response = response.strip()
    
    # time.sleep(5)
    return response

def extract_review_from_real_data():
    base_dir = '/home/v-qinlinzhao/agent4reviews/real_review/original_data'
    result_dir = '/home/v-qinlinzhao/agent4reviews/real_review/extracted_real_review/'
    # 目录为 ICLR202X/notes/xxx.json
    # 将其中所有的json文件的review提取处理
    for root, dirs, files in os.walk(base_dir):
        for file in files:
            if file.endswith('.json'):
                with open(os.path.join(root, file), 'r') as f:
                    data = json.load(f)
                    reviews = []
                    data = data['details']['replies']
                    id = []
                    for d in data:
                        if d['id'] not in id:
                            id.append(d['id'])
                            # 2020-2021
                            if 'content' in d and 'review' in d['content']:
                                reviews.append(d['content']['review'])
                            # 2022
                            if 'content' in d and 'main_review' in d['content']:
                                reviews.append(d['content']['main_review'])
                            # 2023
                            if 'content' in d and 'strength_and_weaknesses' in d['content']:
                                reviews.append(d['content']['strength_and_weaknesses'])
                                
                    # 将每个review分别存入到json文件中,命名格式为 {当前文件名}_{序号}.json
                    # 同时保持每个文件在原目录下相对路径    
                    relative_dir = os.path.relpath(root, base_dir)
                    result_file_dir = os.path.join(result_dir, relative_dir)
                    os.makedirs(result_file_dir, exist_ok=True) 
                       
                    file_base_name = os.path.splitext(file)[0]
                    
                    for i, review in enumerate(reviews): 
                        result_file_name = f"{file_base_name}_{i}.json"
                        result_file_path = os.path.join(result_file_dir, result_file_name)
                        
                        with open(result_file_path, 'w') as result_file:
                            json.dump({"review": review}, result_file, ensure_ascii=False, indent=4)

def extract_meta_review_from_simulated_data():
    base_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/full_paper_discussion'
    result_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/meta_review/'
    # 目录为 ICLR202X/notes/xxx.json
    # 将其中所有的json文件的review提取处理
    for root, dirs, files in os.walk(base_dir):
        for file in files:
            if file.endswith('.json'):
                with open(os.path.join(root, file), 'r') as f:
                    data = json.load(f)
                    # review在data['messages']中最后一个元素中的"content"中
                    review = data['messages'][-1]['content']
                # write review into file, keep the abstract path 
                relative_dir = os.path.relpath(root, base_dir)
                result_file_dir = os.path.join(result_dir, relative_dir)
                os.makedirs(result_file_dir, exist_ok=True)
                result_file_path = os.path.join(result_file_dir, file)
                with open(result_file_path, 'w') as result_file:
                    json.dump({"meta_review": review}, result_file, ensure_ascii=False, indent=4)
                    
# Select 1% of the data randomly, let GPT-4 summarize the reasons, and add them to the reason library if there are reasons that do not exist
def construct_reason_library():
    
    base_dir = '/home/v-qinlinzhao/agent4reviews/paper_review_and_rebuttal/selected_files/'
    
    json_files = []
    for root, dirs, files in os.walk(base_dir):
        for file in files:
            if file.endswith('.json'):
                json_files.append(os.path.join(root, file))

    for file in json_files:
        with open(file, 'r') as f:
            data = json.load(f)
            review = data['review']
            prompt = iter_prompt.format(review=review, 
                                        reason_library=reason_library)
            ans = get_gpt_response(prompt)
            print(ans)

def analyze_reason_in_batch(json_files):
    
    for file in json_files:
        with open(file, 'r') as f:
            data = json.load(f)
            review = data['review']
            prompt = classification_prompt.format(review=review)
            res = get_gpt_response(prompt)
            
            # 解析res的输出,将accept和reject的原因分别提取出来,写成json格式
            # 依据该字符串分别抽取Accept和Reject的原因
            reason_dict = {}
            if 'Reject' in res:
                accept_reason = re.search(r"Accept: (.+?);", res)
            else:
                accept_reason = re.search(r"Accept: (.+)", res)
                
            reject_reason = re.search(r"Reject: (.+)", res)
            # print(reject_reason)
            if accept_reason:
                accept_reason = accept_reason.group(1).split(',')
                reason_dict['accept'] = []
                for r in accept_reason:
                    r = r.strip()
                    if r in ['1', '2', '3', '4', '5']:
                        reason_dict['accept'].append(r)
            if reject_reason:
                reject_reason = reject_reason.group(1).split(',')
                reason_dict['reject'] = []
                for r in reject_reason:
                    r = r.strip()
                    if r in ['1', '2', '3', '4', '5', '6', '7']:
                        reason_dict['reject'].append(r)
    
            # print(res)
            relative_path = os.path.relpath(file, base_dir)
            save_path = os.path.join(save_base_dir, relative_path)
            save_dir = os.path.dirname(save_path)
       
            # 首先找到原来目录的目录结构,然后在save_dir中按照该目录保存结果保存结果
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            with open(save_path, 'w') as f:
                json.dump(reason_dict, f, indent=4)

def convert_txt_to_json():
    base_dir = '/home/v-qinlinzhao/agent4reviews/simulated_review/classified_meta_review_reason'
    reason_count = {}
    reason_total_count = {'accept': {}, 'reject': {}}

    def process_directory(path, reason_dict):
        # 迭代path下的内容
        for item in os.listdir(path):
            item_path = os.path.join(path, item)
            if os.path.isdir(item_path):
                # 如果是目录,递归处理
                reason_dict[item] = {}
                process_directory(item_path, reason_dict[item])
            elif item.endswith('.txt'):
                # 去除txt后缀
                item_name = item.replace('.txt', '')
                reason_dict[item_name] = {'accept': {}, 'reject': {}}
                # 如果是txt文件,处理文件内容
                with open(item_path, 'r') as f:
                    content = f.read()
                    # "Accept: 1,2,3; Reject: 3,4,7"
                    # 依据该字符串分别抽取Accept和Reject的原因
                    if 'Reject' in content:
                        accept_reason = re.search(r"Accept: (.+?);", content)
                    else:
                        accept_reason = re.search(r"Accept: (.+)", content)
                    reject_reason = re.search(r"Reject: (.+)", content)
                    # print(reject_reason)
                    if accept_reason:
                        accept_reason = accept_reason.group(1).split(',')
                        reason_dict[item_name]['accept'] = []
                        for r in accept_reason:
                            r = r.strip()
                            if r in ['1', '2', '3', '4', '5']:
                                if r not in reason_total_count['accept']:
                                    reason_total_count['accept'][r] = 0
                                reason_total_count['accept'][r] += 1
                                reason_dict[item_name]['accept'].append(r)
                    if reject_reason:
                        reject_reason = reject_reason.group(1).split(',')
                        reason_dict[item_name]['reject'] = []
                        for r in reject_reason:
                            r = r.strip()
                            if r in ['1', '2', '3', '4', '5', '6', '7']:
                                if r not in reason_total_count['reject']:
                                    reason_total_count['reject'][r] = 0
                                reason_total_count['reject'][r] += 1
                                reason_dict[item_name]['reject'].append(r)

    process_directory(base_dir, reason_count)

    # 将统计结果写入文件
    with open('reason.json', 'w') as f:
        json.dump(reason_count, f, indent=4)
    
    # 计算accept 和 reject中每一类原因的占比
    # reason_percentage = {'accept': {}, 'reject': {}}
    # for key, value in reason_total_count.items():
    #     total = sum(value.values())
    #     for k, v in value.items():
    #         reason_percentage[key][k] = v / total
        
    # with open('reason_count.json', 'w') as f:
    #     json.dump(reason_total_count, f, indent=4)
        
    # with open('reason_percentage.json', 'w') as f:
    #     json.dump(reason_percentage, f, indent=4)

def count_reasons():
    with open('../reason_result/reason.json', 'r') as f:
        reason_count = json.load(f)

    count = {}
    for year, year_dict in reason_count.items():
        count[year] = {}
        for model, model_dict in year_dict.items():
            count[year][model] = {}
            for type, type_dict in model_dict.items():
                count[year][model][type] = {}
                count[year][model][type]['accept'] = {}
                count[year][model][type]['reject'] = {}
                # 只在type层面做统计就好了
                for paper_id, paper_id_dict in type_dict.items():
                    for review_id, review_id_dict in paper_id_dict.items():
                        print(year, model, type, paper_id, review_id, review_id_dict)
                        # {'accept': {'1': 1, '2': 1, '5': 1}, 'reject': {'3': 1, '4': 1, '5': 1, '7': 1}}
                        if 'accept' in review_id_dict:
                            for accept_reason in review_id_dict['accept']:
                                if accept_reason not in count[year][model][type]['accept']  \
                                                and accept_reason in ['1', '2', '3', '4', '5']:
                                    count[year][model][type]['accept'][accept_reason] = 0
                                count[year][model][type]['accept'][accept_reason] += 1
                        if 'reject' in review_id_dict: 
                            for reject_reason in review_id_dict['reject']:
                                if reject_reason not in count[year][model][type]['reject'] \
                                                and reject_reason in ['1', '2', '3', '4', '5', '6', '7']:
                                    count[year][model][type]['reject'][reject_reason] = 0
                                count[year][model][type]['reject'][reject_reason] += 1   

    with open('reason_count.json', 'w') as f:
        json.dump(count, f, indent=4)

def calcu_reason_percentage_every_year():
    with open('../reason_result/reason_count.json', 'r') as f:
        reason_count = json.load(f)

    distribution = {}
    for year, year_dict in reason_count.items():
        distribution[year] = {}
        for model, model_dict in year_dict.items():
            distribution[year][model] = {}
            for type, type_dict in model_dict.items():
                distribution[year][model][type] = {}
                distribution[year][model][type]['accept'] = {}
                distribution[year][model][type]['reject'] = {}
                # 统计百分比,先将accept下面的count加起来,然后得到每个百分比
                accept_sum = sum(type_dict['accept'].values())
                for reason, count in type_dict['accept'].items():
                    distribution[year][model][type]['accept'][reason] = count / accept_sum
                reject_sum = sum(type_dict['reject'].values())
                for reason, count in type_dict['reject'].items():
                    distribution[year][model][type]['reject'][reason] = count / reject_sum
    
    with open('reason_percentage.json', 'w') as f:
        json.dump(distribution, f, indent=4)
 
def calcu_reason_percentage():
    # 以每种类别为单位,计算每种类别下的accept和reject的百分比
    with open('../reason_result/reason_count.json', 'r') as f:
        reason_count = json.load(f)
        
    count_dict = {}
    for year, year_dict in reason_count.items():
        for model, model_dict in year_dict.items():
            for type, type_dict in model_dict.items():
                count_dict[type] = {'accept': {}, 'reject': {}}
                # 得到所有year和model的accept和reject的count
                accept_count = type_dict['accept']
                reject_count = type_dict['reject']
                # 将accept中每一类原因进行累加
                for reason, count in accept_count.items():
                    if reason not in count_dict[type]['accept']:
                        count_dict[type]['accept'][reason] = 0
                    count_dict[type]['accept'][reason] += count
                for reason, count in reject_count.items():
                    if reason not in count_dict[type]['reject']:
                        count_dict[type]['reject'][reason] = 0
                    count_dict[type]['reject'][reason] += count
    # 计算count_dict中accept和reject其中原因的百分比
    reason_percentage = {}
    for type, type_dict in count_dict.items():
        reason_percentage[type] = {'accept': {}, 'reject': {}}
        accept_sum = sum(type_dict['accept'].values())
        for reason, count in type_dict['accept'].items():
            reason_percentage[type]['accept'][reason] = count / accept_sum
        reject_sum = sum(type_dict['reject'].values())
        for reason, count in type_dict['reject'].items():
            reason_percentage[type]['reject'][reason] = count / reject_sum
    
    with open('reason_percentage.json', 'w') as f:
        json.dump(reason_percentage, f, indent=4)

def draw_bar_chart(accept_or_reject, ax, type, name1, name2):
    # accept_or_reject = 'accept'
    
    x = {
        "accept": ['Novelty', 'Significance', 'Theoretical', 'Clarity', 'Future'],
        "reject": ['Novelty', 'Theoretical', 'Validation', 'Practicality', 'Limitations', 'Presentation', 'Related Work']
    }
    x_range = range(1, len(x[accept_or_reject])+1)
    
    # 画出每一年的type1 和 type2两种type的比例图
    with open('../reason_result/reason_percentage.json', 'r') as f:
        reason_percentage = json.load(f)
    
        # 取出其中的type1和type2两种type
        type1 = reason_percentage[name1][accept_or_reject]
        type2 = reason_percentage[name2][accept_or_reject]
        
        # 按照key排序
        type1 = dict(sorted(type1.items(), key=lambda x: int(x[0])))
        type2 = dict(sorted(type2.items(), key=lambda x: int(x[0])))
        # dict中key应该是1-7,如果有的Key没有,就加上这个key,value设置为0
        for i in x_range:
            if str(i) not in type1:
                type1[str(i)] = 0
            if str(i) not in type2:
                type2[str(i)] = 0
        
        width = 0.35  # 柱子的宽度
        
        # fig, ax = plt.subplots()
        ax.bar([i - width/2 for i in x_range], type1.values(), width, label=name1, color=COLORS[0], alpha=0.3)
        ax.bar([i + width/2 for i in x_range], type2.values(), width, label=name2, color=COLORS[1], alpha=0.3)
        
        ax.legend()
        ax.set_xlabel('Reason', fontsize=FONT_SIZE)
        # ax.set_ylabel('Percentage', fontsize=FONT_SIZE)
        ax.set_title(type, fontsize=FONT_SIZE)
        ax.set_xticks(x_range)  # 设置x轴刻度为整数
        ax.set_xticklabels(x[accept_or_reject], rotation=30)
        
        # plt.savefig(f'reason_distribution_{type}.png')
        # plt.close()                  
                
def draw_bar_chart_baseline(ax, baseline_or_ground, accept_or_reject):
    # if baseline_or_ground == 'Baseline':
    #     with open('../simulated_review/reason_result/reason_percentage.json', 'r') as f:
    #         reason_percentage = json.load(f)
    #         type_data = reason_percentage['BASELINE'][accept_or_reject]
    # elif baseline_or_ground == 'Ground Truth':
    with open('reason_percentage.json', 'r') as f:
        reason_percentage = json.load(f)
        type_data = reason_percentage[baseline_or_ground][accept_or_reject]
    
    
    x = {
        "accept": ['Novelty', 'Significance', 'Theoretical', 'Clarity', 'Future'],
        "reject": ['Novelty', 'Theoretical', 'Validation', 'Practicality', 'Limitations', 'Presentation', 'Related Work']
    }
    x_range = range(1, len(x[accept_or_reject])+1)
        
    # 按照key排序
    type_data = dict(sorted(type_data.items(), key=lambda x: int(x[0])))
    
    # dict中key应该是1-7,如果有的Key没有,就加上这个key,value设置为0
    for i in x_range:
        if str(i) not in type_data:
            type_data[str(i)] = 0
    
    # 画图,将单一类型画到图上,选取颜色,设置透明度
    width = 0.35  # 柱子的宽度
    
    # fig, ax = plt.subplots()
    ax.bar(x_range, type_data.values(), width, label=accept_or_reject, color=COLORS[0], alpha=0.7)
    
    ax.legend()
    ax.set_xlabel('Reason', fontsize=FONT_SIZE)
    # ax.set_ylabel('Percentage', fontsize=FONT_SIZE)
    ax.set_title(baseline_or_ground, fontsize=FONT_SIZE)
    ax.set_xticks(x_range)  # 设置x轴刻度为整数
    ax.set_xticklabels(x[accept_or_reject], rotation=30)
    
    # plt.savefig(f'{baseline_or_ground}_{accept_or_reject}_reason_distribution.pdf')
    # plt.close()

def draw_reason_distribution(accept_or_reject):
    type2name = {'accept': 'Acceptance', 'reject': 'Rejection'}
    
    fig, axs = plt.subplots(1, 3, figsize=(15, 5))
    fig.suptitle(f'Distribution of {type2name[accept_or_reject]} Reasons', fontsize=FONT_SIZE)
    
    # authoritarian_ACx1 inclusive_ACx1 conformist_ACx1
    draw_bar_chart_baseline(axs[0], 'authoritarian_ACx1', accept_or_reject)
    draw_bar_chart_baseline(axs[1], 'inclusive_ACx1', accept_or_reject)
    draw_bar_chart_baseline(axs[2], 'conformist_ACx1', accept_or_reject)
    
    # draw_bar_chart_baseline(axs[0], 'Baseline', accept_or_reject)
    # draw_bar_chart_baseline(axs[1], 'Ground Truth', accept_or_reject)
    
    # for i, (key, value) in enumerate(types.items()):
    #     if i == 3:
    #         break
    #     draw_bar_chart(accept_or_reject, axs[i], key, value[0], value[1])

    axs[0].set_ylabel('Percentage', fontsize=FONT_SIZE)
    
    plt.tight_layout()
    plt.savefig(f'reason_distribution_AC_{accept_or_reject}.pdf')
    plt.close()
        

if __name__ == "__main__":
    # analysis_pipeline()
    # convert_txt_to_json()
    draw_reason_distribution('reject')
    
    
# if __name__ == "__main__":
#     # get current path
#     # print(os.getcwd())
#     print("Start analysis...")
        
#     json_files = []
#     for root, dirs, files in os.walk(base_dir):
#         for file in files:
#             if file.endswith('.json'):
#                 json_files.append(os.path.join(root, file))
    
#     # json_files = [f for f in json_files]
#     # print(json_files)
    
#     # 将其平均分为6份,每份分配给一个进程
#     n = len(json_files)
#     n_per_process = n // 6
#     processes = []
#     for i in range(6):
#         start = i * n_per_process
#         end = (i + 1) * n_per_process
#         if i == 5:
#             end = n
#         p = multiprocessing.Process(target=analyze_reason_in_batch, args=(json_files[start:end], ))
#         processes.append(p)
#         p.start()