File size: 6,160 Bytes
53709ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
# coding: utf-8

# # AgentReview
# 
# 
# 
# In this tutorial, you will explore customizing the AgentReview experiment.
# 
# πŸ“‘ Venue: EMNLP 2024 (Oral)
# 
# πŸ”— arXiv: [https://arxiv.org/abs/2406.12708](https://arxiv.org/abs/2406.12708)
# 
# 🌐 Website: [https://agentreview.github.io/](https://agentreview.github.io/)
# 
# ```bibtex
# @inproceedings{jin2024agentreview,
#   title={AgentReview: Exploring Peer Review Dynamics with LLM Agents},
#   author={Jin, Yiqiao and Zhao, Qinlin and Wang, Yiyang and Chen, Hao and Zhu, Kaijie and Xiao, Yijia and Wang, Jindong},
#   booktitle={EMNLP},
#   year={2024}
# }
# ```
# 

# In[2]:


import os

import numpy as np

from agentreview import const

os.environ["OPENAI_API_VERSION"] = "2024-06-01-preview"


# ## Overview
# 
# AgentReview features a range of customizable variables, such as characteristics of reviewers, authors, area chairs (ACs), as well as the reviewing mechanisms 

# In[3]:



# ## Review Pipeline
# 
# The simulation adopts a structured, 5-phase pipeline (Section 2 in the [paper](https://arxiv.org/abs/2406.12708)):
# 
# * **I. Reviewer Assessment.** Each manuscript is evaluated by three reviewers independently.
# * **II. Author-Reviewer Discussion.** Authors submit rebuttals to address reviewers' concerns;
# * **III. Reviewer-AC Discussion.** The AC facilitates discussions among reviewers, prompting updates to their initial assessments.
# * **IV. Meta-Review Compilation.** The AC synthesizes the discussions into a meta-review.
# * **V. Paper Decision.** The AC makes the final decision on whether to accept or reject the paper, based on all gathered inputs.

# In[2]:



# In[4]:


import os

if os.path.basename(os.getcwd()) == "notebooks":
    os.chdir("..")
# Change the working directory to AgentReview
print(f"Changing the current working directory to {os.path.basename(os.getcwd())}")


# In[5]:


from argparse import Namespace

args = Namespace(openai_key=None, 
          deployment=None, 
          openai_client_type='azure_openai', 
          endpoint=None, 
          api_version='2023-05-15',
          ac_scoring_method='ranking', 
          conference='ICLR2024', 
          num_reviewers_per_paper=3,  
          ignore_missing_metareviews=False, 
          overwrite=False, 
          num_papers_per_area_chair=10, 
          model_name='gpt-4o', 
          output_dir='outputs', 
          max_num_words=16384, 
          visual_dir='outputs/visual', 
          device='cuda', 
          data_dir='./data', # Directory to all paper PDF
          acceptance_rate=0.32, 
          task='paper_review')

os.environ['OPENAI_API_VERSION'] = args.api_version

# In[13]:


malicious_Rx1_setting = {
    "AC": [
        "BASELINE"
    ],

    "reviewer": [
        "malicious",
        "BASELINE",
        "BASELINE"
    ],

    "author": [
        "BASELINE"
    ],
    "global_settings":{
        "provides_numeric_rating": ['reviewer', 'ac'],
        "persons_aware_of_authors_identities": []
    }
}

all_settings = {"malicious_Rx1": malicious_Rx1_setting}
args.experiment_name = "malicious_Rx1_setting"


# 
# `malicious_Rx1` means 1 reviewer is a malicious reviewer, and the other reviewers are default (i.e. `BASELINE`) reviewers.
# 
# 

# ## Reviews
# 
# Define the review pipeline

# In[10]:


from agentreview.environments import PaperReview

def review_one_paper(paper_id, setting):
    paper_decision = paper_id2decision[paper_id]

    experiment_setting = get_experiment_settings(paper_id=paper_id,
                                                 paper_decision=paper_decision,
                                                 setting=setting)
    print(f"Paper ID: {paper_id} (Decision in {args.conference}: {paper_decision})")

    players = initialize_players(experiment_setting=experiment_setting, args=args)

    player_names = [player.name for player in players]

    env = PaperReview(player_names=player_names, paper_decision=paper_decision, paper_id=paper_id,
                          args=args, experiment_setting=experiment_setting)

    arena = PaperReviewArena(players=players, environment=env, args=args)
    arena.launch_cli(interactive=False)


# In[11]:


import os
import sys

sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "agentreview")))

from agentreview.paper_review_settings import get_experiment_settings
from agentreview.paper_review_arena import PaperReviewArena
from agentreview.utility.experiment_utils import initialize_players
from agentreview.utility.utils import project_setup, get_paper_decision_mapping


# In[14]:


sampled_paper_ids = [39]

paper_id2decision, paper_decision2ids = get_paper_decision_mapping(args.data_dir, args.conference)

for paper_id in sampled_paper_ids:
    review_one_paper(paper_id, malicious_Rx1_setting)



def run_paper_decision():
    args.task = "paper_decision"

    # Make sure the same set of papers always go through the same AC no matter which setting we choose
    NUM_PAPERS = len(const.year2paper_ids[args.conference])
    order = np.random.choice(range(NUM_PAPERS), size=NUM_PAPERS, replace=False)


    # Paper IDs we actually used in experiments
    experimental_paper_ids = []

    # For papers that have not been decided yet, load their metareviews
    metareviews = []
    print("Shuffling paper IDs")
    sampled_paper_ids = np.array(const.year2paper_ids[args.conference])[order]

    # Exclude papers that already have AC decisions
    existing_ac_decisions = load_llm_ac_decisions(output_dir=args.output_dir,
                                                             conference=args.conference,
                                                             model_name=args.model_name,
                                                             ac_scoring_method=args.ac_scoring_method,
                                                             experiment_name=args.experiment_name,
                                                             num_papers_per_area_chair=args.num_papers_per_area_chair)

    sampled_paper_ids = [paper_id for paper_id in sampled_paper_ids if paper_id not in existing_ac_decisions]




# In[ ]: