AhsanShahid commited on
Commit
52c121a
·
verified ·
1 Parent(s): 0363960

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import torch
4
+ from transformers import pipeline
5
+ from transformers import BartTokenizer, BartForConditionalGeneration
6
+
7
+ # Replace with your Hugging Face model repository path
8
+ model_repo_path = 'AbdurRehman313/BART_samsum'
9
+
10
+ # Load the model and tokenizer
11
+ model = BartForConditionalGeneration.from_pretrained(model_repo_path)
12
+ tokenizer = BartTokenizer.from_pretrained(model_repo_path)
13
+
14
+ # Initialize the summarization pipeline
15
+ summarizer = pipeline('summarization', model=model,tokenizer=tokenizer)
16
+
17
+ # Streamlit app layout
18
+ st.title("Text Summarization App")
19
+
20
+ # User input
21
+ text_input = st.text_area("Enter text to summarize", height=300)
22
+
23
+ # Summarize the text
24
+ if st.button("Summarize"):
25
+ if text_input:
26
+ with st.spinner("Generating summary..."):
27
+ try:
28
+ summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False)
29
+ st.subheader("Summary")
30
+ st.write(summary[0]['summary_text'])
31
+ except Exception as e:
32
+ st.error(f"Error during summarization: {e}")
33
+ else:
34
+ st.warning("Please enter some text to summarize.")