Spaces:
Sleeping
Sleeping
File size: 14,025 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
from dataclasses import asdict, dataclass, field
from typing import Dict, List
from coqpit import Coqpit, check_argument
from TTS.config import BaseAudioConfig, BaseDatasetConfig, BaseTrainingConfig
@dataclass
class GSTConfig(Coqpit):
"""Defines the Global Style Token Module
Args:
gst_style_input_wav (str):
Path to the wav file used to define the style of the output speech at inference. Defaults to None.
gst_style_input_weights (dict):
Defines the weights for each style token used at inference. Defaults to None.
gst_embedding_dim (int):
Defines the size of the GST embedding vector dimensions. Defaults to 256.
gst_num_heads (int):
Number of attention heads used by the multi-head attention. Defaults to 4.
gst_num_style_tokens (int):
Number of style token vectors. Defaults to 10.
"""
gst_style_input_wav: str = None
gst_style_input_weights: dict = None
gst_embedding_dim: int = 256
gst_use_speaker_embedding: bool = False
gst_num_heads: int = 4
gst_num_style_tokens: int = 10
def check_values(
self,
):
"""Check config fields"""
c = asdict(self)
super().check_values()
check_argument("gst_style_input_weights", c, restricted=False)
check_argument("gst_style_input_wav", c, restricted=False)
check_argument("gst_embedding_dim", c, restricted=True, min_val=0, max_val=1000)
check_argument("gst_use_speaker_embedding", c, restricted=False)
check_argument("gst_num_heads", c, restricted=True, min_val=2, max_val=10)
check_argument("gst_num_style_tokens", c, restricted=True, min_val=1, max_val=1000)
@dataclass
class CapacitronVAEConfig(Coqpit):
"""Defines the capacitron VAE Module
Args:
capacitron_capacity (int):
Defines the variational capacity limit of the prosody embeddings. Defaults to 150.
capacitron_VAE_embedding_dim (int):
Defines the size of the Capacitron embedding vector dimension. Defaults to 128.
capacitron_use_text_summary_embeddings (bool):
If True, use a text summary embedding in Capacitron. Defaults to True.
capacitron_text_summary_embedding_dim (int):
Defines the size of the capacitron text embedding vector dimension. Defaults to 128.
capacitron_use_speaker_embedding (bool):
if True use speaker embeddings in Capacitron. Defaults to False.
capacitron_VAE_loss_alpha (float):
Weight for the VAE loss of the Tacotron model. If set less than or equal to zero, it disables the
corresponding loss function. Defaults to 0.25
capacitron_grad_clip (float):
Gradient clipping value for all gradients except beta. Defaults to 5.0
"""
capacitron_loss_alpha: int = 1
capacitron_capacity: int = 150
capacitron_VAE_embedding_dim: int = 128
capacitron_use_text_summary_embeddings: bool = True
capacitron_text_summary_embedding_dim: int = 128
capacitron_use_speaker_embedding: bool = False
capacitron_VAE_loss_alpha: float = 0.25
capacitron_grad_clip: float = 5.0
def check_values(
self,
):
"""Check config fields"""
c = asdict(self)
super().check_values()
check_argument("capacitron_capacity", c, restricted=True, min_val=10, max_val=500)
check_argument("capacitron_VAE_embedding_dim", c, restricted=True, min_val=16, max_val=1024)
check_argument("capacitron_use_speaker_embedding", c, restricted=False)
check_argument("capacitron_text_summary_embedding_dim", c, restricted=False, min_val=16, max_val=512)
check_argument("capacitron_VAE_loss_alpha", c, restricted=False)
check_argument("capacitron_grad_clip", c, restricted=False)
@dataclass
class CharactersConfig(Coqpit):
"""Defines arguments for the `BaseCharacters` or `BaseVocabulary` and their subclasses.
Args:
characters_class (str):
Defines the class of the characters used. If None, we pick ```Phonemes``` or ```Graphemes``` based on
the configuration. Defaults to None.
vocab_dict (dict):
Defines the vocabulary dictionary used to encode the characters. Defaults to None.
pad (str):
characters in place of empty padding. Defaults to None.
eos (str):
characters showing the end of a sentence. Defaults to None.
bos (str):
characters showing the beginning of a sentence. Defaults to None.
blank (str):
Optional character used between characters by some models for better prosody. Defaults to `_blank`.
characters (str):
character set used by the model. Characters not in this list are ignored when converting input text to
a list of sequence IDs. Defaults to None.
punctuations (str):
characters considered as punctuation as parsing the input sentence. Defaults to None.
phonemes (str):
characters considered as parsing phonemes. This is only for backwards compat. Use `characters` for new
models. Defaults to None.
is_unique (bool):
remove any duplicate characters in the character lists. It is a bandaid for compatibility with the old
models trained with character lists with duplicates. Defaults to True.
is_sorted (bool):
Sort the characters in alphabetical order. Defaults to True.
"""
characters_class: str = None
# using BaseVocabulary
vocab_dict: Dict = None
# using on BaseCharacters
pad: str = None
eos: str = None
bos: str = None
blank: str = None
characters: str = None
punctuations: str = None
phonemes: str = None
is_unique: bool = True # for backwards compatibility of models trained with char sets with duplicates
is_sorted: bool = True
@dataclass
class BaseTTSConfig(BaseTrainingConfig):
"""Shared parameters among all the tts models.
Args:
audio (BaseAudioConfig):
Audio processor config object instance.
use_phonemes (bool):
enable / disable phoneme use.
phonemizer (str):
Name of the phonemizer to use. If set None, the phonemizer will be selected by `phoneme_language`.
Defaults to None.
phoneme_language (str):
Language code for the phonemizer. You can check the list of supported languages by running
`python TTS/tts/utils/text/phonemizers/__init__.py`. Defaults to None.
compute_input_seq_cache (bool):
enable / disable precomputation of the phoneme sequences. At the expense of some delay at the beginning of
the training, It allows faster data loader time and precise limitation with `max_seq_len` and
`min_seq_len`.
text_cleaner (str):
Name of the text cleaner used for cleaning and formatting transcripts.
enable_eos_bos_chars (bool):
enable / disable the use of eos and bos characters.
test_senteces_file (str):
Path to a txt file that has sentences used at test time. The file must have a sentence per line.
phoneme_cache_path (str):
Path to the output folder caching the computed phonemes for each sample.
characters (CharactersConfig):
Instance of a CharactersConfig class.
batch_group_size (int):
Size of the batch groups used for bucketing. By default, the dataloader orders samples by the sequence
length for a more efficient and stable training. If `batch_group_size > 1` then it performs bucketing to
prevent using the same batches for each epoch.
loss_masking (bool):
enable / disable masking loss values against padded segments of samples in a batch.
min_text_len (int):
Minimum length of input text to be used. All shorter samples will be ignored. Defaults to 0.
max_text_len (int):
Maximum length of input text to be used. All longer samples will be ignored. Defaults to float("inf").
min_audio_len (int):
Minimum length of input audio to be used. All shorter samples will be ignored. Defaults to 0.
max_audio_len (int):
Maximum length of input audio to be used. All longer samples will be ignored. The maximum length in the
dataset defines the VRAM used in the training. Hence, pay attention to this value if you encounter an
OOM error in training. Defaults to float("inf").
compute_f0 (int):
(Not in use yet).
compute_energy (int):
(Not in use yet).
compute_linear_spec (bool):
If True data loader computes and returns linear spectrograms alongside the other data.
precompute_num_workers (int):
Number of workers to precompute features. Defaults to 0.
use_noise_augment (bool):
Augment the input audio with random noise.
start_by_longest (bool):
If True, the data loader will start loading the longest batch first. It is useful for checking OOM issues.
Defaults to False.
shuffle (bool):
If True, the data loader will shuffle the dataset when there is not sampler defined. Defaults to True.
drop_last (bool):
If True, the data loader will drop the last batch if it is not complete. It helps to prevent
issues that emerge from the partial batch statistics. Defaults to True.
add_blank (bool):
Add blank characters between each other two characters. It improves performance for some models at expense
of slower run-time due to the longer input sequence.
datasets (List[BaseDatasetConfig]):
List of datasets used for training. If multiple datasets are provided, they are merged and used together
for training.
optimizer (str):
Optimizer used for the training. Set one from `torch.optim.Optimizer` or `TTS.utils.training`.
Defaults to ``.
optimizer_params (dict):
Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}`
lr_scheduler (str):
Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or
`TTS.utils.training`. Defaults to ``.
lr_scheduler_params (dict):
Parameters for the generator learning rate scheduler. Defaults to `{"warmup": 4000}`.
test_sentences (List[str]):
List of sentences to be used at testing. Defaults to '[]'
eval_split_max_size (int):
Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled).
eval_split_size (float):
If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set.
If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%).
use_speaker_weighted_sampler (bool):
Enable / Disable the batch balancer by speaker. Defaults to ```False```.
speaker_weighted_sampler_alpha (float):
Number that control the influence of the speaker sampler weights. Defaults to ```1.0```.
use_language_weighted_sampler (bool):
Enable / Disable the batch balancer by language. Defaults to ```False```.
language_weighted_sampler_alpha (float):
Number that control the influence of the language sampler weights. Defaults to ```1.0```.
use_length_weighted_sampler (bool):
Enable / Disable the batch balancer by audio length. If enabled the dataset will be divided
into 10 buckets considering the min and max audio of the dataset. The sampler weights will be
computed forcing to have the same quantity of data for each bucket in each training batch. Defaults to ```False```.
length_weighted_sampler_alpha (float):
Number that control the influence of the length sampler weights. Defaults to ```1.0```.
"""
audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
# phoneme settings
use_phonemes: bool = False
phonemizer: str = None
phoneme_language: str = None
compute_input_seq_cache: bool = False
text_cleaner: str = None
enable_eos_bos_chars: bool = False
test_sentences_file: str = ""
phoneme_cache_path: str = None
# vocabulary parameters
characters: CharactersConfig = None
add_blank: bool = False
# training params
batch_group_size: int = 0
loss_masking: bool = None
# dataloading
min_audio_len: int = 1
max_audio_len: int = float("inf")
min_text_len: int = 1
max_text_len: int = float("inf")
compute_f0: bool = False
compute_energy: bool = False
compute_linear_spec: bool = False
precompute_num_workers: int = 0
use_noise_augment: bool = False
start_by_longest: bool = False
shuffle: bool = False
drop_last: bool = False
# dataset
datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()])
# optimizer
optimizer: str = "radam"
optimizer_params: dict = None
# scheduler
lr_scheduler: str = None
lr_scheduler_params: dict = field(default_factory=lambda: {})
# testing
test_sentences: List[str] = field(default_factory=lambda: [])
# evaluation
eval_split_max_size: int = None
eval_split_size: float = 0.01
# weighted samplers
use_speaker_weighted_sampler: bool = False
speaker_weighted_sampler_alpha: float = 1.0
use_language_weighted_sampler: bool = False
language_weighted_sampler_alpha: float = 1.0
use_length_weighted_sampler: bool = False
length_weighted_sampler_alpha: float = 1.0
|