Spaces:
Sleeping
Sleeping
File size: 6,778 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import math
import random
from typing import Callable, List, Union
from torch.utils.data.sampler import BatchSampler, Sampler, SubsetRandomSampler
class SubsetSampler(Sampler):
"""
Samples elements sequentially from a given list of indices.
Args:
indices (list): a sequence of indices
"""
def __init__(self, indices):
super().__init__(indices)
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in range(len(self.indices)))
def __len__(self):
return len(self.indices)
class PerfectBatchSampler(Sampler):
"""
Samples a mini-batch of indices for a balanced class batching
Args:
dataset_items(list): dataset items to sample from.
classes (list): list of classes of dataset_items to sample from.
batch_size (int): total number of samples to be sampled in a mini-batch.
num_gpus (int): number of GPU in the data parallel mode.
shuffle (bool): if True, samples randomly, otherwise samples sequentially.
drop_last (bool): if True, drops last incomplete batch.
"""
def __init__(
self,
dataset_items,
classes,
batch_size,
num_classes_in_batch,
num_gpus=1,
shuffle=True,
drop_last=False,
label_key="class_name",
):
super().__init__(dataset_items)
assert (
batch_size % (num_classes_in_batch * num_gpus) == 0
), "Batch size must be divisible by number of classes times the number of data parallel devices (if enabled)."
label_indices = {}
for idx, item in enumerate(dataset_items):
label = item[label_key]
if label not in label_indices.keys():
label_indices[label] = [idx]
else:
label_indices[label].append(idx)
if shuffle:
self._samplers = [SubsetRandomSampler(label_indices[key]) for key in classes]
else:
self._samplers = [SubsetSampler(label_indices[key]) for key in classes]
self._batch_size = batch_size
self._drop_last = drop_last
self._dp_devices = num_gpus
self._num_classes_in_batch = num_classes_in_batch
def __iter__(self):
batch = []
if self._num_classes_in_batch != len(self._samplers):
valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch)
else:
valid_samplers_idx = None
iters = [iter(s) for s in self._samplers]
done = False
while True:
b = []
for i, it in enumerate(iters):
if valid_samplers_idx is not None and i not in valid_samplers_idx:
continue
idx = next(it, None)
if idx is None:
done = True
break
b.append(idx)
if done:
break
batch += b
if len(batch) == self._batch_size:
yield batch
batch = []
if valid_samplers_idx is not None:
valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch)
if not self._drop_last:
if len(batch) > 0:
groups = len(batch) // self._num_classes_in_batch
if groups % self._dp_devices == 0:
yield batch
else:
batch = batch[: (groups // self._dp_devices) * self._dp_devices * self._num_classes_in_batch]
if len(batch) > 0:
yield batch
def __len__(self):
class_batch_size = self._batch_size // self._num_classes_in_batch
return min(((len(s) + class_batch_size - 1) // class_batch_size) for s in self._samplers)
def identity(x):
return x
class SortedSampler(Sampler):
"""Samples elements sequentially, always in the same order.
Taken from https://github.com/PetrochukM/PyTorch-NLP
Args:
data (iterable): Iterable data.
sort_key (callable): Specifies a function of one argument that is used to extract a
numerical comparison key from each list element.
Example:
>>> list(SortedSampler(range(10), sort_key=lambda i: -i))
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
"""
def __init__(self, data, sort_key: Callable = identity):
super().__init__(data)
self.data = data
self.sort_key = sort_key
zip_ = [(i, self.sort_key(row)) for i, row in enumerate(self.data)]
zip_ = sorted(zip_, key=lambda r: r[1])
self.sorted_indexes = [item[0] for item in zip_]
def __iter__(self):
return iter(self.sorted_indexes)
def __len__(self):
return len(self.data)
class BucketBatchSampler(BatchSampler):
"""Bucket batch sampler
Adapted from https://github.com/PetrochukM/PyTorch-NLP
Args:
sampler (torch.data.utils.sampler.Sampler):
batch_size (int): Size of mini-batch.
drop_last (bool): If `True` the sampler will drop the last batch if its size would be less
than `batch_size`.
data (list): List of data samples.
sort_key (callable, optional): Callable to specify a comparison key for sorting.
bucket_size_multiplier (int, optional): Buckets are of size
`batch_size * bucket_size_multiplier`.
Example:
>>> sampler = WeightedRandomSampler(weights, len(weights))
>>> sampler = BucketBatchSampler(sampler, data=data_items, batch_size=32, drop_last=True)
"""
def __init__(
self,
sampler,
data,
batch_size,
drop_last,
sort_key: Union[Callable, List] = identity,
bucket_size_multiplier=100,
):
super().__init__(sampler, batch_size, drop_last)
self.data = data
self.sort_key = sort_key
_bucket_size = batch_size * bucket_size_multiplier
if hasattr(sampler, "__len__"):
_bucket_size = min(_bucket_size, len(sampler))
self.bucket_sampler = BatchSampler(sampler, _bucket_size, False)
def __iter__(self):
for idxs in self.bucket_sampler:
bucket_data = [self.data[idx] for idx in idxs]
sorted_sampler = SortedSampler(bucket_data, self.sort_key)
for batch_idx in SubsetRandomSampler(list(BatchSampler(sorted_sampler, self.batch_size, self.drop_last))):
sorted_idxs = [idxs[i] for i in batch_idx]
yield sorted_idxs
def __len__(self):
if self.drop_last:
return len(self.sampler) // self.batch_size
return math.ceil(len(self.sampler) / self.batch_size)
|