Spaces:
Sleeping
Sleeping
File size: 81,849 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 |
import math
import os
from dataclasses import dataclass, field, replace
from itertools import chain
from typing import Dict, List, Tuple, Union
import numpy as np
import torch
import torch.distributed as dist
import torchaudio
from coqpit import Coqpit
from librosa.filters import mel as librosa_mel_fn
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
from trainer.torch import DistributedSampler, DistributedSamplerWrapper
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.tts.configs.shared_configs import CharactersConfig
from TTS.tts.datasets.dataset import TTSDataset, _parse_sample
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.layers.vits.discriminator import VitsDiscriminator
from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlocks, TextEncoder
from TTS.tts.layers.vits.stochastic_duration_predictor import StochasticDurationPredictor
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.fairseq import rehash_fairseq_vits_checkpoint
from TTS.tts.utils.helpers import generate_path, maximum_path, rand_segments, segment, sequence_mask
from TTS.tts.utils.languages import LanguageManager
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.characters import BaseCharacters, BaseVocabulary, _characters, _pad, _phonemes, _punctuations
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment
from TTS.utils.io import load_fsspec
from TTS.utils.samplers import BucketBatchSampler
from TTS.vocoder.models.hifigan_generator import HifiganGenerator
from TTS.vocoder.utils.generic_utils import plot_results
##############################
# IO / Feature extraction
##############################
# pylint: disable=global-statement
hann_window = {}
mel_basis = {}
@torch.no_grad()
def weights_reset(m: nn.Module):
# check if the current module has reset_parameters and if it is reset the weight
reset_parameters = getattr(m, "reset_parameters", None)
if callable(reset_parameters):
m.reset_parameters()
def get_module_weights_sum(mdl: nn.Module):
dict_sums = {}
for name, w in mdl.named_parameters():
if "weight" in name:
value = w.data.sum().item()
dict_sums[name] = value
return dict_sums
def load_audio(file_path):
"""Load the audio file normalized in [-1, 1]
Return Shapes:
- x: :math:`[1, T]`
"""
x, sr = torchaudio.load(file_path)
assert (x > 1).sum() + (x < -1).sum() == 0
return x, sr
def _amp_to_db(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def _db_to_amp(x, C=1):
return torch.exp(x) / C
def amp_to_db(magnitudes):
output = _amp_to_db(magnitudes)
return output
def db_to_amp(magnitudes):
output = _db_to_amp(magnitudes)
return output
def wav_to_spec(y, n_fft, hop_length, win_length, center=False):
"""
Args Shapes:
- y : :math:`[B, 1, T]`
Return Shapes:
- spec : :math:`[B,C,T]`
"""
y = y.squeeze(1)
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
global hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
wnsize_dtype_device = str(win_length) + "_" + dtype_device
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_length,
win_length=win_length,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
def spec_to_mel(spec, n_fft, num_mels, sample_rate, fmin, fmax):
"""
Args Shapes:
- spec : :math:`[B,C,T]`
Return Shapes:
- mel : :math:`[B,C,T]`
"""
global mel_basis
dtype_device = str(spec.dtype) + "_" + str(spec.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
mel = torch.matmul(mel_basis[fmax_dtype_device], spec)
mel = amp_to_db(mel)
return mel
def wav_to_mel(y, n_fft, num_mels, sample_rate, hop_length, win_length, fmin, fmax, center=False):
"""
Args Shapes:
- y : :math:`[B, 1, T]`
Return Shapes:
- spec : :math:`[B,C,T]`
"""
y = y.squeeze(1)
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
global mel_basis, hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
wnsize_dtype_device = str(win_length) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_length,
win_length=win_length,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = amp_to_db(spec)
return spec
#############################
# CONFIGS
#############################
@dataclass
class VitsAudioConfig(Coqpit):
fft_size: int = 1024
sample_rate: int = 22050
win_length: int = 1024
hop_length: int = 256
num_mels: int = 80
mel_fmin: int = 0
mel_fmax: int = None
##############################
# DATASET
##############################
def get_attribute_balancer_weights(items: list, attr_name: str, multi_dict: dict = None):
"""Create inverse frequency weights for balancing the dataset.
Use `multi_dict` to scale relative weights."""
attr_names_samples = np.array([item[attr_name] for item in items])
unique_attr_names = np.unique(attr_names_samples).tolist()
attr_idx = [unique_attr_names.index(l) for l in attr_names_samples]
attr_count = np.array([len(np.where(attr_names_samples == l)[0]) for l in unique_attr_names])
weight_attr = 1.0 / attr_count
dataset_samples_weight = np.array([weight_attr[l] for l in attr_idx])
dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight)
if multi_dict is not None:
# check if all keys are in the multi_dict
for k in multi_dict:
assert k in unique_attr_names, f"{k} not in {unique_attr_names}"
# scale weights
multiplier_samples = np.array([multi_dict.get(item[attr_name], 1.0) for item in items])
dataset_samples_weight *= multiplier_samples
return (
torch.from_numpy(dataset_samples_weight).float(),
unique_attr_names,
np.unique(dataset_samples_weight).tolist(),
)
class VitsDataset(TTSDataset):
def __init__(self, model_args, *args, **kwargs):
super().__init__(*args, **kwargs)
self.pad_id = self.tokenizer.characters.pad_id
self.model_args = model_args
def __getitem__(self, idx):
item = self.samples[idx]
raw_text = item["text"]
wav, _ = load_audio(item["audio_file"])
if self.model_args.encoder_sample_rate is not None:
if wav.size(1) % self.model_args.encoder_sample_rate != 0:
wav = wav[:, : -int(wav.size(1) % self.model_args.encoder_sample_rate)]
wav_filename = os.path.basename(item["audio_file"])
token_ids = self.get_token_ids(idx, item["text"])
# after phonemization the text length may change
# this is a shameful 🤭 hack to prevent longer phonemes
# TODO: find a better fix
if len(token_ids) > self.max_text_len or wav.shape[1] < self.min_audio_len:
self.rescue_item_idx += 1
return self.__getitem__(self.rescue_item_idx)
return {
"raw_text": raw_text,
"token_ids": token_ids,
"token_len": len(token_ids),
"wav": wav,
"wav_file": wav_filename,
"speaker_name": item["speaker_name"],
"language_name": item["language"],
"audio_unique_name": item["audio_unique_name"],
}
@property
def lengths(self):
lens = []
for item in self.samples:
_, wav_file, *_ = _parse_sample(item)
audio_len = os.path.getsize(wav_file) / 16 * 8 # assuming 16bit audio
lens.append(audio_len)
return lens
def collate_fn(self, batch):
"""
Return Shapes:
- tokens: :math:`[B, T]`
- token_lens :math:`[B]`
- token_rel_lens :math:`[B]`
- waveform: :math:`[B, 1, T]`
- waveform_lens: :math:`[B]`
- waveform_rel_lens: :math:`[B]`
- speaker_names: :math:`[B]`
- language_names: :math:`[B]`
- audiofile_paths: :math:`[B]`
- raw_texts: :math:`[B]`
- audio_unique_names: :math:`[B]`
"""
# convert list of dicts to dict of lists
B = len(batch)
batch = {k: [dic[k] for dic in batch] for k in batch[0]}
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x.size(1) for x in batch["wav"]]), dim=0, descending=True
)
max_text_len = max([len(x) for x in batch["token_ids"]])
token_lens = torch.LongTensor(batch["token_len"])
token_rel_lens = token_lens / token_lens.max()
wav_lens = [w.shape[1] for w in batch["wav"]]
wav_lens = torch.LongTensor(wav_lens)
wav_lens_max = torch.max(wav_lens)
wav_rel_lens = wav_lens / wav_lens_max
token_padded = torch.LongTensor(B, max_text_len)
wav_padded = torch.FloatTensor(B, 1, wav_lens_max)
token_padded = token_padded.zero_() + self.pad_id
wav_padded = wav_padded.zero_() + self.pad_id
for i in range(len(ids_sorted_decreasing)):
token_ids = batch["token_ids"][i]
token_padded[i, : batch["token_len"][i]] = torch.LongTensor(token_ids)
wav = batch["wav"][i]
wav_padded[i, :, : wav.size(1)] = torch.FloatTensor(wav)
return {
"tokens": token_padded,
"token_lens": token_lens,
"token_rel_lens": token_rel_lens,
"waveform": wav_padded, # (B x T)
"waveform_lens": wav_lens, # (B)
"waveform_rel_lens": wav_rel_lens,
"speaker_names": batch["speaker_name"],
"language_names": batch["language_name"],
"audio_files": batch["wav_file"],
"raw_text": batch["raw_text"],
"audio_unique_names": batch["audio_unique_name"],
}
##############################
# MODEL DEFINITION
##############################
@dataclass
class VitsArgs(Coqpit):
"""VITS model arguments.
Args:
num_chars (int):
Number of characters in the vocabulary. Defaults to 100.
out_channels (int):
Number of output channels of the decoder. Defaults to 513.
spec_segment_size (int):
Decoder input segment size. Defaults to 32 `(32 * hoplength = waveform length)`.
hidden_channels (int):
Number of hidden channels of the model. Defaults to 192.
hidden_channels_ffn_text_encoder (int):
Number of hidden channels of the feed-forward layers of the text encoder transformer. Defaults to 256.
num_heads_text_encoder (int):
Number of attention heads of the text encoder transformer. Defaults to 2.
num_layers_text_encoder (int):
Number of transformer layers in the text encoder. Defaults to 6.
kernel_size_text_encoder (int):
Kernel size of the text encoder transformer FFN layers. Defaults to 3.
dropout_p_text_encoder (float):
Dropout rate of the text encoder. Defaults to 0.1.
dropout_p_duration_predictor (float):
Dropout rate of the duration predictor. Defaults to 0.1.
kernel_size_posterior_encoder (int):
Kernel size of the posterior encoder's WaveNet layers. Defaults to 5.
dilatation_posterior_encoder (int):
Dilation rate of the posterior encoder's WaveNet layers. Defaults to 1.
num_layers_posterior_encoder (int):
Number of posterior encoder's WaveNet layers. Defaults to 16.
kernel_size_flow (int):
Kernel size of the Residual Coupling layers of the flow network. Defaults to 5.
dilatation_flow (int):
Dilation rate of the Residual Coupling WaveNet layers of the flow network. Defaults to 1.
num_layers_flow (int):
Number of Residual Coupling WaveNet layers of the flow network. Defaults to 6.
resblock_type_decoder (str):
Type of the residual block in the decoder network. Defaults to "1".
resblock_kernel_sizes_decoder (List[int]):
Kernel sizes of the residual blocks in the decoder network. Defaults to `[3, 7, 11]`.
resblock_dilation_sizes_decoder (List[List[int]]):
Dilation sizes of the residual blocks in the decoder network. Defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`.
upsample_rates_decoder (List[int]):
Upsampling rates for each concecutive upsampling layer in the decoder network. The multiply of these
values must be equal to the kop length used for computing spectrograms. Defaults to `[8, 8, 2, 2]`.
upsample_initial_channel_decoder (int):
Number of hidden channels of the first upsampling convolution layer of the decoder network. Defaults to 512.
upsample_kernel_sizes_decoder (List[int]):
Kernel sizes for each upsampling layer of the decoder network. Defaults to `[16, 16, 4, 4]`.
periods_multi_period_discriminator (List[int]):
Periods values for Vits Multi-Period Discriminator. Defaults to `[2, 3, 5, 7, 11]`.
use_sdp (bool):
Use Stochastic Duration Predictor. Defaults to True.
noise_scale (float):
Noise scale used for the sample noise tensor in training. Defaults to 1.0.
inference_noise_scale (float):
Noise scale used for the sample noise tensor in inference. Defaults to 0.667.
length_scale (float):
Scale factor for the predicted duration values. Smaller values result faster speech. Defaults to 1.
noise_scale_dp (float):
Noise scale used by the Stochastic Duration Predictor sample noise in training. Defaults to 1.0.
inference_noise_scale_dp (float):
Noise scale for the Stochastic Duration Predictor in inference. Defaults to 0.8.
max_inference_len (int):
Maximum inference length to limit the memory use. Defaults to None.
init_discriminator (bool):
Initialize the disciminator network if set True. Set False for inference. Defaults to True.
use_spectral_norm_disriminator (bool):
Use spectral normalization over weight norm in the discriminator. Defaults to False.
use_speaker_embedding (bool):
Enable/Disable speaker embedding for multi-speaker models. Defaults to False.
num_speakers (int):
Number of speakers for the speaker embedding layer. Defaults to 0.
speakers_file (str):
Path to the speaker mapping file for the Speaker Manager. Defaults to None.
speaker_embedding_channels (int):
Number of speaker embedding channels. Defaults to 256.
use_d_vector_file (bool):
Enable/Disable the use of d-vectors for multi-speaker training. Defaults to False.
d_vector_file (List[str]):
List of paths to the files including pre-computed speaker embeddings. Defaults to None.
d_vector_dim (int):
Number of d-vector channels. Defaults to 0.
detach_dp_input (bool):
Detach duration predictor's input from the network for stopping the gradients. Defaults to True.
use_language_embedding (bool):
Enable/Disable language embedding for multilingual models. Defaults to False.
embedded_language_dim (int):
Number of language embedding channels. Defaults to 4.
num_languages (int):
Number of languages for the language embedding layer. Defaults to 0.
language_ids_file (str):
Path to the language mapping file for the Language Manager. Defaults to None.
use_speaker_encoder_as_loss (bool):
Enable/Disable Speaker Consistency Loss (SCL). Defaults to False.
speaker_encoder_config_path (str):
Path to the file speaker encoder config file, to use for SCL. Defaults to "".
speaker_encoder_model_path (str):
Path to the file speaker encoder checkpoint file, to use for SCL. Defaults to "".
condition_dp_on_speaker (bool):
Condition the duration predictor on the speaker embedding. Defaults to True.
freeze_encoder (bool):
Freeze the encoder weigths during training. Defaults to False.
freeze_DP (bool):
Freeze the duration predictor weigths during training. Defaults to False.
freeze_PE (bool):
Freeze the posterior encoder weigths during training. Defaults to False.
freeze_flow_encoder (bool):
Freeze the flow encoder weigths during training. Defaults to False.
freeze_waveform_decoder (bool):
Freeze the waveform decoder weigths during training. Defaults to False.
encoder_sample_rate (int):
If not None this sample rate will be used for training the Posterior Encoder,
flow, text_encoder and duration predictor. The decoder part (vocoder) will be
trained with the `config.audio.sample_rate`. Defaults to None.
interpolate_z (bool):
If `encoder_sample_rate` not None and this parameter True the nearest interpolation
will be used to upsampling the latent variable z with the sampling rate `encoder_sample_rate`
to the `config.audio.sample_rate`. If it is False you will need to add extra
`upsample_rates_decoder` to match the shape. Defaults to True.
"""
num_chars: int = 100
out_channels: int = 513
spec_segment_size: int = 32
hidden_channels: int = 192
hidden_channels_ffn_text_encoder: int = 768
num_heads_text_encoder: int = 2
num_layers_text_encoder: int = 6
kernel_size_text_encoder: int = 3
dropout_p_text_encoder: float = 0.1
dropout_p_duration_predictor: float = 0.5
kernel_size_posterior_encoder: int = 5
dilation_rate_posterior_encoder: int = 1
num_layers_posterior_encoder: int = 16
kernel_size_flow: int = 5
dilation_rate_flow: int = 1
num_layers_flow: int = 4
resblock_type_decoder: str = "1"
resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11])
resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2])
upsample_initial_channel_decoder: int = 512
upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
periods_multi_period_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11])
use_sdp: bool = True
noise_scale: float = 1.0
inference_noise_scale: float = 0.667
length_scale: float = 1
noise_scale_dp: float = 1.0
inference_noise_scale_dp: float = 1.0
max_inference_len: int = None
init_discriminator: bool = True
use_spectral_norm_disriminator: bool = False
use_speaker_embedding: bool = False
num_speakers: int = 0
speakers_file: str = None
d_vector_file: List[str] = None
speaker_embedding_channels: int = 256
use_d_vector_file: bool = False
d_vector_dim: int = 0
detach_dp_input: bool = True
use_language_embedding: bool = False
embedded_language_dim: int = 4
num_languages: int = 0
language_ids_file: str = None
use_speaker_encoder_as_loss: bool = False
speaker_encoder_config_path: str = ""
speaker_encoder_model_path: str = ""
condition_dp_on_speaker: bool = True
freeze_encoder: bool = False
freeze_DP: bool = False
freeze_PE: bool = False
freeze_flow_decoder: bool = False
freeze_waveform_decoder: bool = False
encoder_sample_rate: int = None
interpolate_z: bool = True
reinit_DP: bool = False
reinit_text_encoder: bool = False
class Vits(BaseTTS):
"""VITS TTS model
Paper::
https://arxiv.org/pdf/2106.06103.pdf
Paper Abstract::
Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel
sampling have been proposed, but their sample quality does not match that of two-stage TTS systems.
In this work, we present a parallel endto-end TTS method that generates more natural sounding audio than
current two-stage models. Our method adopts variational inference augmented with normalizing flows and
an adversarial training process, which improves the expressive power of generative modeling. We also propose a
stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the
uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the
natural one-to-many relationship in which a text input can be spoken in multiple ways
with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS)
on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly
available TTS systems and achieves a MOS comparable to ground truth.
Check :class:`TTS.tts.configs.vits_config.VitsConfig` for class arguments.
Examples:
>>> from TTS.tts.configs.vits_config import VitsConfig
>>> from TTS.tts.models.vits import Vits
>>> config = VitsConfig()
>>> model = Vits(config)
"""
def __init__(
self,
config: Coqpit,
ap: "AudioProcessor" = None,
tokenizer: "TTSTokenizer" = None,
speaker_manager: SpeakerManager = None,
language_manager: LanguageManager = None,
):
super().__init__(config, ap, tokenizer, speaker_manager, language_manager)
self.init_multispeaker(config)
self.init_multilingual(config)
self.init_upsampling()
self.length_scale = self.args.length_scale
self.noise_scale = self.args.noise_scale
self.inference_noise_scale = self.args.inference_noise_scale
self.inference_noise_scale_dp = self.args.inference_noise_scale_dp
self.noise_scale_dp = self.args.noise_scale_dp
self.max_inference_len = self.args.max_inference_len
self.spec_segment_size = self.args.spec_segment_size
self.text_encoder = TextEncoder(
self.args.num_chars,
self.args.hidden_channels,
self.args.hidden_channels,
self.args.hidden_channels_ffn_text_encoder,
self.args.num_heads_text_encoder,
self.args.num_layers_text_encoder,
self.args.kernel_size_text_encoder,
self.args.dropout_p_text_encoder,
language_emb_dim=self.embedded_language_dim,
)
self.posterior_encoder = PosteriorEncoder(
self.args.out_channels,
self.args.hidden_channels,
self.args.hidden_channels,
kernel_size=self.args.kernel_size_posterior_encoder,
dilation_rate=self.args.dilation_rate_posterior_encoder,
num_layers=self.args.num_layers_posterior_encoder,
cond_channels=self.embedded_speaker_dim,
)
self.flow = ResidualCouplingBlocks(
self.args.hidden_channels,
self.args.hidden_channels,
kernel_size=self.args.kernel_size_flow,
dilation_rate=self.args.dilation_rate_flow,
num_layers=self.args.num_layers_flow,
cond_channels=self.embedded_speaker_dim,
)
if self.args.use_sdp:
self.duration_predictor = StochasticDurationPredictor(
self.args.hidden_channels,
192,
3,
self.args.dropout_p_duration_predictor,
4,
cond_channels=self.embedded_speaker_dim if self.args.condition_dp_on_speaker else 0,
language_emb_dim=self.embedded_language_dim,
)
else:
self.duration_predictor = DurationPredictor(
self.args.hidden_channels,
256,
3,
self.args.dropout_p_duration_predictor,
cond_channels=self.embedded_speaker_dim,
language_emb_dim=self.embedded_language_dim,
)
self.waveform_decoder = HifiganGenerator(
self.args.hidden_channels,
1,
self.args.resblock_type_decoder,
self.args.resblock_dilation_sizes_decoder,
self.args.resblock_kernel_sizes_decoder,
self.args.upsample_kernel_sizes_decoder,
self.args.upsample_initial_channel_decoder,
self.args.upsample_rates_decoder,
inference_padding=0,
cond_channels=self.embedded_speaker_dim,
conv_pre_weight_norm=False,
conv_post_weight_norm=False,
conv_post_bias=False,
)
if self.args.init_discriminator:
self.disc = VitsDiscriminator(
periods=self.args.periods_multi_period_discriminator,
use_spectral_norm=self.args.use_spectral_norm_disriminator,
)
@property
def device(self):
return next(self.parameters()).device
def init_multispeaker(self, config: Coqpit):
"""Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer
or with external `d_vectors` computed from a speaker encoder model.
You must provide a `speaker_manager` at initialization to set up the multi-speaker modules.
Args:
config (Coqpit): Model configuration.
data (List, optional): Dataset items to infer number of speakers. Defaults to None.
"""
self.embedded_speaker_dim = 0
self.num_speakers = self.args.num_speakers
self.audio_transform = None
if self.speaker_manager:
self.num_speakers = self.speaker_manager.num_speakers
if self.args.use_speaker_embedding:
self._init_speaker_embedding()
if self.args.use_d_vector_file:
self._init_d_vector()
# TODO: make this a function
if self.args.use_speaker_encoder_as_loss:
if self.speaker_manager.encoder is None and (
not self.args.speaker_encoder_model_path or not self.args.speaker_encoder_config_path
):
raise RuntimeError(
" [!] To use the speaker consistency loss (SCL) you need to specify speaker_encoder_model_path and speaker_encoder_config_path !!"
)
self.speaker_manager.encoder.eval()
print(" > External Speaker Encoder Loaded !!")
if (
hasattr(self.speaker_manager.encoder, "audio_config")
and self.config.audio.sample_rate != self.speaker_manager.encoder.audio_config["sample_rate"]
):
self.audio_transform = torchaudio.transforms.Resample(
orig_freq=self.config.audio.sample_rate,
new_freq=self.speaker_manager.encoder.audio_config["sample_rate"],
)
def _init_speaker_embedding(self):
# pylint: disable=attribute-defined-outside-init
if self.num_speakers > 0:
print(" > initialization of speaker-embedding layers.")
self.embedded_speaker_dim = self.args.speaker_embedding_channels
self.emb_g = nn.Embedding(self.num_speakers, self.embedded_speaker_dim)
def _init_d_vector(self):
# pylint: disable=attribute-defined-outside-init
if hasattr(self, "emb_g"):
raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.")
self.embedded_speaker_dim = self.args.d_vector_dim
def init_multilingual(self, config: Coqpit):
"""Initialize multilingual modules of a model.
Args:
config (Coqpit): Model configuration.
"""
if self.args.language_ids_file is not None:
self.language_manager = LanguageManager(language_ids_file_path=config.language_ids_file)
if self.args.use_language_embedding and self.language_manager:
print(" > initialization of language-embedding layers.")
self.num_languages = self.language_manager.num_languages
self.embedded_language_dim = self.args.embedded_language_dim
self.emb_l = nn.Embedding(self.num_languages, self.embedded_language_dim)
torch.nn.init.xavier_uniform_(self.emb_l.weight)
else:
self.embedded_language_dim = 0
def init_upsampling(self):
"""
Initialize upsampling modules of a model.
"""
if self.args.encoder_sample_rate:
self.interpolate_factor = self.config.audio["sample_rate"] / self.args.encoder_sample_rate
self.audio_resampler = torchaudio.transforms.Resample(
orig_freq=self.config.audio["sample_rate"], new_freq=self.args.encoder_sample_rate
) # pylint: disable=W0201
def on_epoch_start(self, trainer): # pylint: disable=W0613
"""Freeze layers at the beginning of an epoch"""
self._freeze_layers()
# set the device of speaker encoder
if self.args.use_speaker_encoder_as_loss:
self.speaker_manager.encoder = self.speaker_manager.encoder.to(self.device)
def on_init_end(self, trainer): # pylint: disable=W0613
"""Reinit layes if needed"""
if self.args.reinit_DP:
before_dict = get_module_weights_sum(self.duration_predictor)
# Applies weights_reset recursively to every submodule of the duration predictor
self.duration_predictor.apply(fn=weights_reset)
after_dict = get_module_weights_sum(self.duration_predictor)
for key, value in after_dict.items():
if value == before_dict[key]:
raise RuntimeError(" [!] The weights of Duration Predictor was not reinit check it !")
print(" > Duration Predictor was reinit.")
if self.args.reinit_text_encoder:
before_dict = get_module_weights_sum(self.text_encoder)
# Applies weights_reset recursively to every submodule of the duration predictor
self.text_encoder.apply(fn=weights_reset)
after_dict = get_module_weights_sum(self.text_encoder)
for key, value in after_dict.items():
if value == before_dict[key]:
raise RuntimeError(" [!] The weights of Text Encoder was not reinit check it !")
print(" > Text Encoder was reinit.")
def get_aux_input(self, aux_input: Dict):
sid, g, lid, _ = self._set_cond_input(aux_input)
return {"speaker_ids": sid, "style_wav": None, "d_vectors": g, "language_ids": lid}
def _freeze_layers(self):
if self.args.freeze_encoder:
for param in self.text_encoder.parameters():
param.requires_grad = False
if hasattr(self, "emb_l"):
for param in self.emb_l.parameters():
param.requires_grad = False
if self.args.freeze_PE:
for param in self.posterior_encoder.parameters():
param.requires_grad = False
if self.args.freeze_DP:
for param in self.duration_predictor.parameters():
param.requires_grad = False
if self.args.freeze_flow_decoder:
for param in self.flow.parameters():
param.requires_grad = False
if self.args.freeze_waveform_decoder:
for param in self.waveform_decoder.parameters():
param.requires_grad = False
@staticmethod
def _set_cond_input(aux_input: Dict):
"""Set the speaker conditioning input based on the multi-speaker mode."""
sid, g, lid, durations = None, None, None, None
if "speaker_ids" in aux_input and aux_input["speaker_ids"] is not None:
sid = aux_input["speaker_ids"]
if sid.ndim == 0:
sid = sid.unsqueeze_(0)
if "d_vectors" in aux_input and aux_input["d_vectors"] is not None:
g = F.normalize(aux_input["d_vectors"]).unsqueeze(-1)
if g.ndim == 2:
g = g.unsqueeze_(0)
if "language_ids" in aux_input and aux_input["language_ids"] is not None:
lid = aux_input["language_ids"]
if lid.ndim == 0:
lid = lid.unsqueeze_(0)
if "durations" in aux_input and aux_input["durations"] is not None:
durations = aux_input["durations"]
return sid, g, lid, durations
def _set_speaker_input(self, aux_input: Dict):
d_vectors = aux_input.get("d_vectors", None)
speaker_ids = aux_input.get("speaker_ids", None)
if d_vectors is not None and speaker_ids is not None:
raise ValueError("[!] Cannot use d-vectors and speaker-ids together.")
if speaker_ids is not None and not hasattr(self, "emb_g"):
raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.")
g = speaker_ids if speaker_ids is not None else d_vectors
return g
def forward_mas(self, outputs, z_p, m_p, logs_p, x, x_mask, y_mask, g, lang_emb):
# find the alignment path
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
with torch.no_grad():
o_scale = torch.exp(-2 * logs_p)
logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1]).unsqueeze(-1) # [b, t, 1]
logp2 = torch.einsum("klm, kln -> kmn", [o_scale, -0.5 * (z_p**2)])
logp3 = torch.einsum("klm, kln -> kmn", [m_p * o_scale, z_p])
logp4 = torch.sum(-0.5 * (m_p**2) * o_scale, [1]).unsqueeze(-1) # [b, t, 1]
logp = logp2 + logp3 + logp1 + logp4
attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach() # [b, 1, t, t']
# duration predictor
attn_durations = attn.sum(3)
if self.args.use_sdp:
loss_duration = self.duration_predictor(
x.detach() if self.args.detach_dp_input else x,
x_mask,
attn_durations,
g=g.detach() if self.args.detach_dp_input and g is not None else g,
lang_emb=lang_emb.detach() if self.args.detach_dp_input and lang_emb is not None else lang_emb,
)
loss_duration = loss_duration / torch.sum(x_mask)
else:
attn_log_durations = torch.log(attn_durations + 1e-6) * x_mask
log_durations = self.duration_predictor(
x.detach() if self.args.detach_dp_input else x,
x_mask,
g=g.detach() if self.args.detach_dp_input and g is not None else g,
lang_emb=lang_emb.detach() if self.args.detach_dp_input and lang_emb is not None else lang_emb,
)
loss_duration = torch.sum((log_durations - attn_log_durations) ** 2, [1, 2]) / torch.sum(x_mask)
outputs["loss_duration"] = loss_duration
return outputs, attn
def upsampling_z(self, z, slice_ids=None, y_lengths=None, y_mask=None):
spec_segment_size = self.spec_segment_size
if self.args.encoder_sample_rate:
# recompute the slices and spec_segment_size if needed
slice_ids = slice_ids * int(self.interpolate_factor) if slice_ids is not None else slice_ids
spec_segment_size = spec_segment_size * int(self.interpolate_factor)
# interpolate z if needed
if self.args.interpolate_z:
z = torch.nn.functional.interpolate(z, scale_factor=[self.interpolate_factor], mode="linear").squeeze(0)
# recompute the mask if needed
if y_lengths is not None and y_mask is not None:
y_mask = (
sequence_mask(y_lengths * self.interpolate_factor, None).to(y_mask.dtype).unsqueeze(1)
) # [B, 1, T_dec_resampled]
return z, spec_segment_size, slice_ids, y_mask
def forward( # pylint: disable=dangerous-default-value
self,
x: torch.tensor,
x_lengths: torch.tensor,
y: torch.tensor,
y_lengths: torch.tensor,
waveform: torch.tensor,
aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None},
) -> Dict:
"""Forward pass of the model.
Args:
x (torch.tensor): Batch of input character sequence IDs.
x_lengths (torch.tensor): Batch of input character sequence lengths.
y (torch.tensor): Batch of input spectrograms.
y_lengths (torch.tensor): Batch of input spectrogram lengths.
waveform (torch.tensor): Batch of ground truth waveforms per sample.
aux_input (dict, optional): Auxiliary inputs for multi-speaker and multi-lingual training.
Defaults to {"d_vectors": None, "speaker_ids": None, "language_ids": None}.
Returns:
Dict: model outputs keyed by the output name.
Shapes:
- x: :math:`[B, T_seq]`
- x_lengths: :math:`[B]`
- y: :math:`[B, C, T_spec]`
- y_lengths: :math:`[B]`
- waveform: :math:`[B, 1, T_wav]`
- d_vectors: :math:`[B, C, 1]`
- speaker_ids: :math:`[B]`
- language_ids: :math:`[B]`
Return Shapes:
- model_outputs: :math:`[B, 1, T_wav]`
- alignments: :math:`[B, T_seq, T_dec]`
- z: :math:`[B, C, T_dec]`
- z_p: :math:`[B, C, T_dec]`
- m_p: :math:`[B, C, T_dec]`
- logs_p: :math:`[B, C, T_dec]`
- m_q: :math:`[B, C, T_dec]`
- logs_q: :math:`[B, C, T_dec]`
- waveform_seg: :math:`[B, 1, spec_seg_size * hop_length]`
- gt_spk_emb: :math:`[B, 1, speaker_encoder.proj_dim]`
- syn_spk_emb: :math:`[B, 1, speaker_encoder.proj_dim]`
"""
outputs = {}
sid, g, lid, _ = self._set_cond_input(aux_input)
# speaker embedding
if self.args.use_speaker_embedding and sid is not None:
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
# language embedding
lang_emb = None
if self.args.use_language_embedding and lid is not None:
lang_emb = self.emb_l(lid).unsqueeze(-1)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
# posterior encoder
z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g)
# flow layers
z_p = self.flow(z, y_mask, g=g)
# duration predictor
outputs, attn = self.forward_mas(outputs, z_p, m_p, logs_p, x, x_mask, y_mask, g=g, lang_emb=lang_emb)
# expand prior
m_p = torch.einsum("klmn, kjm -> kjn", [attn, m_p])
logs_p = torch.einsum("klmn, kjm -> kjn", [attn, logs_p])
# select a random feature segment for the waveform decoder
z_slice, slice_ids = rand_segments(z, y_lengths, self.spec_segment_size, let_short_samples=True, pad_short=True)
# interpolate z if needed
z_slice, spec_segment_size, slice_ids, _ = self.upsampling_z(z_slice, slice_ids=slice_ids)
o = self.waveform_decoder(z_slice, g=g)
wav_seg = segment(
waveform,
slice_ids * self.config.audio.hop_length,
spec_segment_size * self.config.audio.hop_length,
pad_short=True,
)
if self.args.use_speaker_encoder_as_loss and self.speaker_manager.encoder is not None:
# concate generated and GT waveforms
wavs_batch = torch.cat((wav_seg, o), dim=0)
# resample audio to speaker encoder sample_rate
# pylint: disable=W0105
if self.audio_transform is not None:
wavs_batch = self.audio_transform(wavs_batch)
pred_embs = self.speaker_manager.encoder.forward(wavs_batch, l2_norm=True)
# split generated and GT speaker embeddings
gt_spk_emb, syn_spk_emb = torch.chunk(pred_embs, 2, dim=0)
else:
gt_spk_emb, syn_spk_emb = None, None
outputs.update(
{
"model_outputs": o,
"alignments": attn.squeeze(1),
"m_p": m_p,
"logs_p": logs_p,
"z": z,
"z_p": z_p,
"m_q": m_q,
"logs_q": logs_q,
"waveform_seg": wav_seg,
"gt_spk_emb": gt_spk_emb,
"syn_spk_emb": syn_spk_emb,
"slice_ids": slice_ids,
}
)
return outputs
@staticmethod
def _set_x_lengths(x, aux_input):
if "x_lengths" in aux_input and aux_input["x_lengths"] is not None:
return aux_input["x_lengths"]
return torch.tensor(x.shape[1:2]).to(x.device)
@torch.no_grad()
def inference(
self,
x,
aux_input={"x_lengths": None, "d_vectors": None, "speaker_ids": None, "language_ids": None, "durations": None},
): # pylint: disable=dangerous-default-value
"""
Note:
To run in batch mode, provide `x_lengths` else model assumes that the batch size is 1.
Shapes:
- x: :math:`[B, T_seq]`
- x_lengths: :math:`[B]`
- d_vectors: :math:`[B, C]`
- speaker_ids: :math:`[B]`
Return Shapes:
- model_outputs: :math:`[B, 1, T_wav]`
- alignments: :math:`[B, T_seq, T_dec]`
- z: :math:`[B, C, T_dec]`
- z_p: :math:`[B, C, T_dec]`
- m_p: :math:`[B, C, T_dec]`
- logs_p: :math:`[B, C, T_dec]`
"""
sid, g, lid, durations = self._set_cond_input(aux_input)
x_lengths = self._set_x_lengths(x, aux_input)
# speaker embedding
if self.args.use_speaker_embedding and sid is not None:
g = self.emb_g(sid).unsqueeze(-1)
# language embedding
lang_emb = None
if self.args.use_language_embedding and lid is not None:
lang_emb = self.emb_l(lid).unsqueeze(-1)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
if durations is None:
if self.args.use_sdp:
logw = self.duration_predictor(
x,
x_mask,
g=g if self.args.condition_dp_on_speaker else None,
reverse=True,
noise_scale=self.inference_noise_scale_dp,
lang_emb=lang_emb,
)
else:
logw = self.duration_predictor(
x, x_mask, g=g if self.args.condition_dp_on_speaker else None, lang_emb=lang_emb
)
w = torch.exp(logw) * x_mask * self.length_scale
else:
assert durations.shape[-1] == x.shape[-1]
w = durations.unsqueeze(0)
w_ceil = torch.ceil(w)
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_mask = sequence_mask(y_lengths, None).to(x_mask.dtype).unsqueeze(1) # [B, 1, T_dec]
attn_mask = x_mask * y_mask.transpose(1, 2) # [B, 1, T_enc] * [B, T_dec, 1]
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1).transpose(1, 2))
m_p = torch.matmul(attn.transpose(1, 2), m_p.transpose(1, 2)).transpose(1, 2)
logs_p = torch.matmul(attn.transpose(1, 2), logs_p.transpose(1, 2)).transpose(1, 2)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * self.inference_noise_scale
z = self.flow(z_p, y_mask, g=g, reverse=True)
# upsampling if needed
z, _, _, y_mask = self.upsampling_z(z, y_lengths=y_lengths, y_mask=y_mask)
o = self.waveform_decoder((z * y_mask)[:, :, : self.max_inference_len], g=g)
outputs = {
"model_outputs": o,
"alignments": attn.squeeze(1),
"durations": w_ceil,
"z": z,
"z_p": z_p,
"m_p": m_p,
"logs_p": logs_p,
"y_mask": y_mask,
}
return outputs
@torch.no_grad()
def inference_voice_conversion(
self, reference_wav, speaker_id=None, d_vector=None, reference_speaker_id=None, reference_d_vector=None
):
"""Inference for voice conversion
Args:
reference_wav (Tensor): Reference wavform. Tensor of shape [B, T]
speaker_id (Tensor): speaker_id of the target speaker. Tensor of shape [B]
d_vector (Tensor): d_vector embedding of target speaker. Tensor of shape `[B, C]`
reference_speaker_id (Tensor): speaker_id of the reference_wav speaker. Tensor of shape [B]
reference_d_vector (Tensor): d_vector embedding of the reference_wav speaker. Tensor of shape `[B, C]`
"""
# compute spectrograms
y = wav_to_spec(
reference_wav,
self.config.audio.fft_size,
self.config.audio.hop_length,
self.config.audio.win_length,
center=False,
)
y_lengths = torch.tensor([y.size(-1)]).to(y.device)
speaker_cond_src = reference_speaker_id if reference_speaker_id is not None else reference_d_vector
speaker_cond_tgt = speaker_id if speaker_id is not None else d_vector
wav, _, _ = self.voice_conversion(y, y_lengths, speaker_cond_src, speaker_cond_tgt)
return wav
def voice_conversion(self, y, y_lengths, speaker_cond_src, speaker_cond_tgt):
"""Forward pass for voice conversion
TODO: create an end-point for voice conversion
Args:
y (Tensor): Reference spectrograms. Tensor of shape [B, T, C]
y_lengths (Tensor): Length of each reference spectrogram. Tensor of shape [B]
speaker_cond_src (Tensor): Reference speaker ID. Tensor of shape [B,]
speaker_cond_tgt (Tensor): Target speaker ID. Tensor of shape [B,]
"""
assert self.num_speakers > 0, "num_speakers have to be larger than 0."
# speaker embedding
if self.args.use_speaker_embedding and not self.args.use_d_vector_file:
g_src = self.emb_g(torch.from_numpy((np.array(speaker_cond_src))).unsqueeze(0)).unsqueeze(-1)
g_tgt = self.emb_g(torch.from_numpy((np.array(speaker_cond_tgt))).unsqueeze(0)).unsqueeze(-1)
elif not self.args.use_speaker_embedding and self.args.use_d_vector_file:
g_src = F.normalize(speaker_cond_src).unsqueeze(-1)
g_tgt = F.normalize(speaker_cond_tgt).unsqueeze(-1)
else:
raise RuntimeError(" [!] Voice conversion is only supported on multi-speaker models.")
z, _, _, y_mask = self.posterior_encoder(y, y_lengths, g=g_src)
z_p = self.flow(z, y_mask, g=g_src)
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
o_hat = self.waveform_decoder(z_hat * y_mask, g=g_tgt)
return o_hat, y_mask, (z, z_p, z_hat)
def train_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int) -> Tuple[Dict, Dict]:
"""Perform a single training step. Run the model forward pass and compute losses.
Args:
batch (Dict): Input tensors.
criterion (nn.Module): Loss layer designed for the model.
optimizer_idx (int): Index of optimizer to use. 0 for the generator and 1 for the discriminator networks.
Returns:
Tuple[Dict, Dict]: Model ouputs and computed losses.
"""
spec_lens = batch["spec_lens"]
if optimizer_idx == 0:
tokens = batch["tokens"]
token_lenghts = batch["token_lens"]
spec = batch["spec"]
d_vectors = batch["d_vectors"]
speaker_ids = batch["speaker_ids"]
language_ids = batch["language_ids"]
waveform = batch["waveform"]
# generator pass
outputs = self.forward(
tokens,
token_lenghts,
spec,
spec_lens,
waveform,
aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids},
)
# cache tensors for the generator pass
self.model_outputs_cache = outputs # pylint: disable=attribute-defined-outside-init
# compute scores and features
scores_disc_fake, _, scores_disc_real, _ = self.disc(
outputs["model_outputs"].detach(), outputs["waveform_seg"]
)
# compute loss
with autocast(enabled=False): # use float32 for the criterion
loss_dict = criterion[optimizer_idx](
scores_disc_real,
scores_disc_fake,
)
return outputs, loss_dict
if optimizer_idx == 1:
mel = batch["mel"]
# compute melspec segment
with autocast(enabled=False):
if self.args.encoder_sample_rate:
spec_segment_size = self.spec_segment_size * int(self.interpolate_factor)
else:
spec_segment_size = self.spec_segment_size
mel_slice = segment(
mel.float(), self.model_outputs_cache["slice_ids"], spec_segment_size, pad_short=True
)
mel_slice_hat = wav_to_mel(
y=self.model_outputs_cache["model_outputs"].float(),
n_fft=self.config.audio.fft_size,
sample_rate=self.config.audio.sample_rate,
num_mels=self.config.audio.num_mels,
hop_length=self.config.audio.hop_length,
win_length=self.config.audio.win_length,
fmin=self.config.audio.mel_fmin,
fmax=self.config.audio.mel_fmax,
center=False,
)
# compute discriminator scores and features
scores_disc_fake, feats_disc_fake, _, feats_disc_real = self.disc(
self.model_outputs_cache["model_outputs"], self.model_outputs_cache["waveform_seg"]
)
# compute losses
with autocast(enabled=False): # use float32 for the criterion
loss_dict = criterion[optimizer_idx](
mel_slice_hat=mel_slice.float(),
mel_slice=mel_slice_hat.float(),
z_p=self.model_outputs_cache["z_p"].float(),
logs_q=self.model_outputs_cache["logs_q"].float(),
m_p=self.model_outputs_cache["m_p"].float(),
logs_p=self.model_outputs_cache["logs_p"].float(),
z_len=spec_lens,
scores_disc_fake=scores_disc_fake,
feats_disc_fake=feats_disc_fake,
feats_disc_real=feats_disc_real,
loss_duration=self.model_outputs_cache["loss_duration"],
use_speaker_encoder_as_loss=self.args.use_speaker_encoder_as_loss,
gt_spk_emb=self.model_outputs_cache["gt_spk_emb"],
syn_spk_emb=self.model_outputs_cache["syn_spk_emb"],
)
return self.model_outputs_cache, loss_dict
raise ValueError(" [!] Unexpected `optimizer_idx`.")
def _log(self, ap, batch, outputs, name_prefix="train"): # pylint: disable=unused-argument,no-self-use
y_hat = outputs[1]["model_outputs"]
y = outputs[1]["waveform_seg"]
figures = plot_results(y_hat, y, ap, name_prefix)
sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
audios = {f"{name_prefix}/audio": sample_voice}
alignments = outputs[1]["alignments"]
align_img = alignments[0].data.cpu().numpy().T
figures.update(
{
"alignment": plot_alignment(align_img, output_fig=False),
}
)
return figures, audios
def train_log(
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
): # pylint: disable=no-self-use
"""Create visualizations and waveform examples.
For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to
be projected onto Tensorboard.
Args:
ap (AudioProcessor): audio processor used at training.
batch (Dict): Model inputs used at the previous training step.
outputs (Dict): Model outputs generated at the previoud training step.
Returns:
Tuple[Dict, np.ndarray]: training plots and output waveform.
"""
figures, audios = self._log(self.ap, batch, outputs, "train")
logger.train_figures(steps, figures)
logger.train_audios(steps, audios, self.ap.sample_rate)
@torch.no_grad()
def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int):
return self.train_step(batch, criterion, optimizer_idx)
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
figures, audios = self._log(self.ap, batch, outputs, "eval")
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, self.ap.sample_rate)
def get_aux_input_from_test_sentences(self, sentence_info):
if hasattr(self.config, "model_args"):
config = self.config.model_args
else:
config = self.config
# extract speaker and language info
text, speaker_name, style_wav, language_name = None, None, None, None
if isinstance(sentence_info, list):
if len(sentence_info) == 1:
text = sentence_info[0]
elif len(sentence_info) == 2:
text, speaker_name = sentence_info
elif len(sentence_info) == 3:
text, speaker_name, style_wav = sentence_info
elif len(sentence_info) == 4:
text, speaker_name, style_wav, language_name = sentence_info
else:
text = sentence_info
# get speaker id/d_vector
speaker_id, d_vector, language_id = None, None, None
if hasattr(self, "speaker_manager"):
if config.use_d_vector_file:
if speaker_name is None:
d_vector = self.speaker_manager.get_random_embedding()
else:
d_vector = self.speaker_manager.get_mean_embedding(speaker_name, num_samples=None, randomize=False)
elif config.use_speaker_embedding:
if speaker_name is None:
speaker_id = self.speaker_manager.get_random_id()
else:
speaker_id = self.speaker_manager.name_to_id[speaker_name]
# get language id
if hasattr(self, "language_manager") and config.use_language_embedding and language_name is not None:
language_id = self.language_manager.name_to_id[language_name]
return {
"text": text,
"speaker_id": speaker_id,
"style_wav": style_wav,
"d_vector": d_vector,
"language_id": language_id,
"language_name": language_name,
}
@torch.no_grad()
def test_run(self, assets) -> Tuple[Dict, Dict]:
"""Generic test run for `tts` models used by `Trainer`.
You can override this for a different behaviour.
Returns:
Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.
"""
print(" | > Synthesizing test sentences.")
test_audios = {}
test_figures = {}
test_sentences = self.config.test_sentences
for idx, s_info in enumerate(test_sentences):
aux_inputs = self.get_aux_input_from_test_sentences(s_info)
wav, alignment, _, _ = synthesis(
self,
aux_inputs["text"],
self.config,
"cuda" in str(next(self.parameters()).device),
speaker_id=aux_inputs["speaker_id"],
d_vector=aux_inputs["d_vector"],
style_wav=aux_inputs["style_wav"],
language_id=aux_inputs["language_id"],
use_griffin_lim=True,
do_trim_silence=False,
).values()
test_audios["{}-audio".format(idx)] = wav
test_figures["{}-alignment".format(idx)] = plot_alignment(alignment.T, output_fig=False)
return {"figures": test_figures, "audios": test_audios}
def test_log(
self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument
) -> None:
logger.test_audios(steps, outputs["audios"], self.ap.sample_rate)
logger.test_figures(steps, outputs["figures"])
def format_batch(self, batch: Dict) -> Dict:
"""Compute speaker, langugage IDs and d_vector for the batch if necessary."""
speaker_ids = None
language_ids = None
d_vectors = None
# get numerical speaker ids from speaker names
if self.speaker_manager is not None and self.speaker_manager.name_to_id and self.args.use_speaker_embedding:
speaker_ids = [self.speaker_manager.name_to_id[sn] for sn in batch["speaker_names"]]
if speaker_ids is not None:
speaker_ids = torch.LongTensor(speaker_ids)
# get d_vectors from audio file names
if self.speaker_manager is not None and self.speaker_manager.embeddings and self.args.use_d_vector_file:
d_vector_mapping = self.speaker_manager.embeddings
d_vectors = [d_vector_mapping[w]["embedding"] for w in batch["audio_unique_names"]]
d_vectors = torch.FloatTensor(d_vectors)
# get language ids from language names
if self.language_manager is not None and self.language_manager.name_to_id and self.args.use_language_embedding:
language_ids = [self.language_manager.name_to_id[ln] for ln in batch["language_names"]]
if language_ids is not None:
language_ids = torch.LongTensor(language_ids)
batch["language_ids"] = language_ids
batch["d_vectors"] = d_vectors
batch["speaker_ids"] = speaker_ids
return batch
def format_batch_on_device(self, batch):
"""Compute spectrograms on the device."""
ac = self.config.audio
if self.args.encoder_sample_rate:
wav = self.audio_resampler(batch["waveform"])
else:
wav = batch["waveform"]
# compute spectrograms
batch["spec"] = wav_to_spec(wav, ac.fft_size, ac.hop_length, ac.win_length, center=False)
if self.args.encoder_sample_rate:
# recompute spec with high sampling rate to the loss
spec_mel = wav_to_spec(batch["waveform"], ac.fft_size, ac.hop_length, ac.win_length, center=False)
# remove extra stft frames if needed
if spec_mel.size(2) > int(batch["spec"].size(2) * self.interpolate_factor):
spec_mel = spec_mel[:, :, : int(batch["spec"].size(2) * self.interpolate_factor)]
else:
batch["spec"] = batch["spec"][:, :, : int(spec_mel.size(2) / self.interpolate_factor)]
else:
spec_mel = batch["spec"]
batch["mel"] = spec_to_mel(
spec=spec_mel,
n_fft=ac.fft_size,
num_mels=ac.num_mels,
sample_rate=ac.sample_rate,
fmin=ac.mel_fmin,
fmax=ac.mel_fmax,
)
if self.args.encoder_sample_rate:
assert batch["spec"].shape[2] == int(
batch["mel"].shape[2] / self.interpolate_factor
), f"{batch['spec'].shape[2]}, {batch['mel'].shape[2]}"
else:
assert batch["spec"].shape[2] == batch["mel"].shape[2], f"{batch['spec'].shape[2]}, {batch['mel'].shape[2]}"
# compute spectrogram frame lengths
batch["spec_lens"] = (batch["spec"].shape[2] * batch["waveform_rel_lens"]).int()
batch["mel_lens"] = (batch["mel"].shape[2] * batch["waveform_rel_lens"]).int()
if self.args.encoder_sample_rate:
assert (batch["spec_lens"] - (batch["mel_lens"] / self.interpolate_factor).int()).sum() == 0
else:
assert (batch["spec_lens"] - batch["mel_lens"]).sum() == 0
# zero the padding frames
batch["spec"] = batch["spec"] * sequence_mask(batch["spec_lens"]).unsqueeze(1)
batch["mel"] = batch["mel"] * sequence_mask(batch["mel_lens"]).unsqueeze(1)
return batch
def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1, is_eval=False):
weights = None
data_items = dataset.samples
if getattr(config, "use_weighted_sampler", False):
for attr_name, alpha in config.weighted_sampler_attrs.items():
print(f" > Using weighted sampler for attribute '{attr_name}' with alpha '{alpha}'")
multi_dict = config.weighted_sampler_multipliers.get(attr_name, None)
print(multi_dict)
weights, attr_names, attr_weights = get_attribute_balancer_weights(
attr_name=attr_name, items=data_items, multi_dict=multi_dict
)
weights = weights * alpha
print(f" > Attribute weights for '{attr_names}' \n | > {attr_weights}")
# input_audio_lenghts = [os.path.getsize(x["audio_file"]) for x in data_items]
if weights is not None:
w_sampler = WeightedRandomSampler(weights, len(weights))
batch_sampler = BucketBatchSampler(
w_sampler,
data=data_items,
batch_size=config.eval_batch_size if is_eval else config.batch_size,
sort_key=lambda x: os.path.getsize(x["audio_file"]),
drop_last=True,
)
else:
batch_sampler = None
# sampler for DDP
if batch_sampler is None:
batch_sampler = DistributedSampler(dataset) if num_gpus > 1 else None
else: # If a sampler is already defined use this sampler and DDP sampler together
batch_sampler = (
DistributedSamplerWrapper(batch_sampler) if num_gpus > 1 else batch_sampler
) # TODO: check batch_sampler with multi-gpu
return batch_sampler
def get_data_loader(
self,
config: Coqpit,
assets: Dict,
is_eval: bool,
samples: Union[List[Dict], List[List]],
verbose: bool,
num_gpus: int,
rank: int = None,
) -> "DataLoader":
if is_eval and not config.run_eval:
loader = None
else:
# init dataloader
dataset = VitsDataset(
model_args=self.args,
samples=samples,
batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size,
min_text_len=config.min_text_len,
max_text_len=config.max_text_len,
min_audio_len=config.min_audio_len,
max_audio_len=config.max_audio_len,
phoneme_cache_path=config.phoneme_cache_path,
precompute_num_workers=config.precompute_num_workers,
verbose=verbose,
tokenizer=self.tokenizer,
start_by_longest=config.start_by_longest,
)
# wait all the DDP process to be ready
if num_gpus > 1:
dist.barrier()
# sort input sequences from short to long
dataset.preprocess_samples()
# get samplers
sampler = self.get_sampler(config, dataset, num_gpus)
if sampler is None:
loader = DataLoader(
dataset,
batch_size=config.eval_batch_size if is_eval else config.batch_size,
shuffle=False, # shuffle is done in the dataset.
collate_fn=dataset.collate_fn,
drop_last=False, # setting this False might cause issues in AMP training.
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
pin_memory=False,
)
else:
if num_gpus > 1:
loader = DataLoader(
dataset,
sampler=sampler,
batch_size=config.eval_batch_size if is_eval else config.batch_size,
collate_fn=dataset.collate_fn,
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
pin_memory=False,
)
else:
loader = DataLoader(
dataset,
batch_sampler=sampler,
collate_fn=dataset.collate_fn,
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
pin_memory=False,
)
return loader
def get_optimizer(self) -> List:
"""Initiate and return the GAN optimizers based on the config parameters.
It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator.
Returns:
List: optimizers.
"""
# select generator parameters
optimizer0 = get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.disc)
gen_parameters = chain(params for k, params in self.named_parameters() if not k.startswith("disc."))
optimizer1 = get_optimizer(
self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, parameters=gen_parameters
)
return [optimizer0, optimizer1]
def get_lr(self) -> List:
"""Set the initial learning rates for each optimizer.
Returns:
List: learning rates for each optimizer.
"""
return [self.config.lr_disc, self.config.lr_gen]
def get_scheduler(self, optimizer) -> List:
"""Set the schedulers for each optimizer.
Args:
optimizer (List[`torch.optim.Optimizer`]): List of optimizers.
Returns:
List: Schedulers, one for each optimizer.
"""
scheduler_D = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[0])
scheduler_G = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[1])
return [scheduler_D, scheduler_G]
def get_criterion(self):
"""Get criterions for each optimizer. The index in the output list matches the optimizer idx used in
`train_step()`"""
from TTS.tts.layers.losses import ( # pylint: disable=import-outside-toplevel
VitsDiscriminatorLoss,
VitsGeneratorLoss,
)
return [VitsDiscriminatorLoss(self.config), VitsGeneratorLoss(self.config)]
def load_checkpoint(
self, config, checkpoint_path, eval=False, strict=True, cache=False
): # pylint: disable=unused-argument, redefined-builtin
"""Load the model checkpoint and setup for training or inference"""
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
# compat band-aid for the pre-trained models to not use the encoder baked into the model
# TODO: consider baking the speaker encoder into the model and call it from there.
# as it is probably easier for model distribution.
state["model"] = {k: v for k, v in state["model"].items() if "speaker_encoder" not in k}
if self.args.encoder_sample_rate is not None and eval:
# audio resampler is not used in inference time
self.audio_resampler = None
# handle fine-tuning from a checkpoint with additional speakers
if hasattr(self, "emb_g") and state["model"]["emb_g.weight"].shape != self.emb_g.weight.shape:
num_new_speakers = self.emb_g.weight.shape[0] - state["model"]["emb_g.weight"].shape[0]
print(f" > Loading checkpoint with {num_new_speakers} additional speakers.")
emb_g = state["model"]["emb_g.weight"]
new_row = torch.randn(num_new_speakers, emb_g.shape[1])
emb_g = torch.cat([emb_g, new_row], axis=0)
state["model"]["emb_g.weight"] = emb_g
# load the model weights
self.load_state_dict(state["model"], strict=strict)
if eval:
self.eval()
assert not self.training
def load_fairseq_checkpoint(
self, config, checkpoint_dir, eval=False, strict=True
): # pylint: disable=unused-argument, redefined-builtin
"""Load VITS checkpoints released by fairseq here: https://github.com/facebookresearch/fairseq/tree/main/examples/mms
Performs some changes for compatibility.
Args:
config (Coqpit): 🐸TTS model config.
checkpoint_dir (str): Path to the checkpoint directory.
eval (bool, optional): Set to True for evaluation. Defaults to False.
"""
import json
from TTS.tts.utils.text.cleaners import basic_cleaners
self.disc = None
# set paths
config_file = os.path.join(checkpoint_dir, "config.json")
checkpoint_file = os.path.join(checkpoint_dir, "G_100000.pth")
vocab_file = os.path.join(checkpoint_dir, "vocab.txt")
# set config params
with open(config_file, "r", encoding="utf-8") as file:
# Load the JSON data as a dictionary
config_org = json.load(file)
self.config.audio.sample_rate = config_org["data"]["sampling_rate"]
# self.config.add_blank = config['add_blank']
# set tokenizer
vocab = FairseqVocab(vocab_file)
self.text_encoder.emb = nn.Embedding(vocab.num_chars, config.model_args.hidden_channels)
self.tokenizer = TTSTokenizer(
use_phonemes=False,
text_cleaner=basic_cleaners,
characters=vocab,
phonemizer=None,
add_blank=config_org["data"]["add_blank"],
use_eos_bos=False,
)
# load fairseq checkpoint
new_chk = rehash_fairseq_vits_checkpoint(checkpoint_file)
self.load_state_dict(new_chk, strict=strict)
if eval:
self.eval()
assert not self.training
@staticmethod
def init_from_config(config: "VitsConfig", samples: Union[List[List], List[Dict]] = None, verbose=True):
"""Initiate model from config
Args:
config (VitsConfig): Model config.
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
Defaults to None.
"""
from TTS.utils.audio import AudioProcessor
upsample_rate = torch.prod(torch.as_tensor(config.model_args.upsample_rates_decoder)).item()
if not config.model_args.encoder_sample_rate:
assert (
upsample_rate == config.audio.hop_length
), f" [!] Product of upsample rates must be equal to the hop length - {upsample_rate} vs {config.audio.hop_length}"
else:
encoder_to_vocoder_upsampling_factor = config.audio.sample_rate / config.model_args.encoder_sample_rate
effective_hop_length = config.audio.hop_length * encoder_to_vocoder_upsampling_factor
assert (
upsample_rate == effective_hop_length
), f" [!] Product of upsample rates must be equal to the hop length - {upsample_rate} vs {effective_hop_length}"
ap = AudioProcessor.init_from_config(config, verbose=verbose)
tokenizer, new_config = TTSTokenizer.init_from_config(config)
speaker_manager = SpeakerManager.init_from_config(config, samples)
language_manager = LanguageManager.init_from_config(config)
if config.model_args.speaker_encoder_model_path:
speaker_manager.init_encoder(
config.model_args.speaker_encoder_model_path, config.model_args.speaker_encoder_config_path
)
return Vits(new_config, ap, tokenizer, speaker_manager, language_manager)
def export_onnx(self, output_path: str = "coqui_vits.onnx", verbose: bool = True):
"""Export model to ONNX format for inference
Args:
output_path (str): Path to save the exported model.
verbose (bool): Print verbose information. Defaults to True.
"""
# rollback values
_forward = self.forward
disc = None
if hasattr(self, "disc"):
disc = self.disc
training = self.training
# set export mode
self.disc = None
self.eval()
def onnx_inference(text, text_lengths, scales, sid=None, langid=None):
noise_scale = scales[0]
length_scale = scales[1]
noise_scale_dp = scales[2]
self.noise_scale = noise_scale
self.length_scale = length_scale
self.noise_scale_dp = noise_scale_dp
return self.inference(
text,
aux_input={
"x_lengths": text_lengths,
"d_vectors": None,
"speaker_ids": sid,
"language_ids": langid,
"durations": None,
},
)["model_outputs"]
self.forward = onnx_inference
# set dummy inputs
dummy_input_length = 100
sequences = torch.randint(low=0, high=2, size=(1, dummy_input_length), dtype=torch.long)
sequence_lengths = torch.LongTensor([sequences.size(1)])
scales = torch.FloatTensor([self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp])
dummy_input = (sequences, sequence_lengths, scales)
input_names = ["input", "input_lengths", "scales"]
if self.num_speakers > 0:
speaker_id = torch.LongTensor([0])
dummy_input += (speaker_id,)
input_names.append("sid")
if hasattr(self, "num_languages") and self.num_languages > 0 and self.embedded_language_dim > 0:
language_id = torch.LongTensor([0])
dummy_input += (language_id,)
input_names.append("langid")
# export to ONNX
torch.onnx.export(
model=self,
args=dummy_input,
opset_version=15,
f=output_path,
verbose=verbose,
input_names=input_names,
output_names=["output"],
dynamic_axes={
"input": {0: "batch_size", 1: "phonemes"},
"input_lengths": {0: "batch_size"},
"output": {0: "batch_size", 1: "time1", 2: "time2"},
},
)
# rollback
self.forward = _forward
if training:
self.train()
if not disc is None:
self.disc = disc
def load_onnx(self, model_path: str, cuda=False):
import onnxruntime as ort
providers = [
"CPUExecutionProvider"
if cuda is False
else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
]
sess_options = ort.SessionOptions()
self.onnx_sess = ort.InferenceSession(
model_path,
sess_options=sess_options,
providers=providers,
)
def inference_onnx(self, x, x_lengths=None, speaker_id=None, language_id=None):
"""ONNX inference"""
if isinstance(x, torch.Tensor):
x = x.cpu().numpy()
if x_lengths is None:
x_lengths = np.array([x.shape[1]], dtype=np.int64)
if isinstance(x_lengths, torch.Tensor):
x_lengths = x_lengths.cpu().numpy()
scales = np.array(
[self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp],
dtype=np.float32,
)
input_params = {"input": x, "input_lengths": x_lengths, "scales": scales}
if not speaker_id is None:
input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy()
if not language_id is None:
input_params["langid"] = torch.tensor([language_id]).cpu().numpy()
audio = self.onnx_sess.run(
["output"],
input_params,
)
return audio[0][0]
##################################
# VITS CHARACTERS
##################################
class VitsCharacters(BaseCharacters):
"""Characters class for VITs model for compatibility with pre-trained models"""
def __init__(
self,
graphemes: str = _characters,
punctuations: str = _punctuations,
pad: str = _pad,
ipa_characters: str = _phonemes,
) -> None:
if ipa_characters is not None:
graphemes += ipa_characters
super().__init__(graphemes, punctuations, pad, None, None, "<BLNK>", is_unique=False, is_sorted=True)
def _create_vocab(self):
self._vocab = [self._pad] + list(self._punctuations) + list(self._characters) + [self._blank]
self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)}
# pylint: disable=unnecessary-comprehension
self._id_to_char = {idx: char for idx, char in enumerate(self.vocab)}
@staticmethod
def init_from_config(config: Coqpit):
if config.characters is not None:
_pad = config.characters["pad"]
_punctuations = config.characters["punctuations"]
_letters = config.characters["characters"]
_letters_ipa = config.characters["phonemes"]
return (
VitsCharacters(graphemes=_letters, ipa_characters=_letters_ipa, punctuations=_punctuations, pad=_pad),
config,
)
characters = VitsCharacters()
new_config = replace(config, characters=characters.to_config())
return characters, new_config
def to_config(self) -> "CharactersConfig":
return CharactersConfig(
characters=self._characters,
punctuations=self._punctuations,
pad=self._pad,
eos=None,
bos=None,
blank=self._blank,
is_unique=False,
is_sorted=True,
)
class FairseqVocab(BaseVocabulary):
def __init__(self, vocab: str):
super(FairseqVocab).__init__()
self.vocab = vocab
@property
def vocab(self):
"""Return the vocabulary dictionary."""
return self._vocab
@vocab.setter
def vocab(self, vocab_file):
with open(vocab_file, encoding="utf-8") as f:
self._vocab = [x.replace("\n", "") for x in f.readlines()]
self.blank = self._vocab[0]
self.pad = " "
self._char_to_id = {s: i for i, s in enumerate(self._vocab)} # pylint: disable=unnecessary-comprehension
self._id_to_char = {i: s for i, s in enumerate(self._vocab)} # pylint: disable=unnecessary-comprehension
|