Spaces:
Sleeping
Sleeping
File size: 17,806 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
### credit: https://github.com/dunky11/voicesmith
import math
from typing import Tuple
import torch
import torch.nn as nn # pylint: disable=consider-using-from-import
import torch.nn.functional as F
from TTS.tts.layers.delightful_tts.conv_layers import Conv1dGLU, DepthWiseConv1d, PointwiseConv1d
from TTS.tts.layers.delightful_tts.networks import GLUActivation
def calc_same_padding(kernel_size: int) -> Tuple[int, int]:
pad = kernel_size // 2
return (pad, pad - (kernel_size + 1) % 2)
class Conformer(nn.Module):
def __init__(
self,
dim: int,
n_layers: int,
n_heads: int,
speaker_embedding_dim: int,
p_dropout: float,
kernel_size_conv_mod: int,
lrelu_slope: float,
):
"""
A Transformer variant that integrates both CNNs and Transformers components.
Conformer proposes a novel combination of self-attention and convolution, in which self-attention
learns the global interaction while the convolutions efficiently capture the local correlations.
Args:
dim (int): Number of the dimensions for the model.
n_layers (int): Number of model layers.
n_heads (int): The number of attention heads.
speaker_embedding_dim (int): Number of speaker embedding dimensions.
p_dropout (float): Probabilty of dropout.
kernel_size_conv_mod (int): Size of kernels for convolution modules.
Inputs: inputs, mask
- **inputs** (batch, time, dim): Tensor containing input vector
- **encoding** (batch, time, dim): Positional embedding tensor
- **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
Returns:
- **outputs** (batch, time, dim): Tensor produced by Conformer Encoder.
"""
super().__init__()
d_k = d_v = dim // n_heads
self.layer_stack = nn.ModuleList(
[
ConformerBlock(
dim,
n_heads,
d_k,
d_v,
kernel_size_conv_mod=kernel_size_conv_mod,
dropout=p_dropout,
speaker_embedding_dim=speaker_embedding_dim,
lrelu_slope=lrelu_slope,
)
for _ in range(n_layers)
]
)
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
speaker_embedding: torch.Tensor,
encoding: torch.Tensor,
) -> torch.Tensor:
"""
Shapes:
- x: :math:`[B, T_src, C]`
- mask: :math: `[B]`
- speaker_embedding: :math: `[B, C]`
- encoding: :math: `[B, T_max2, C]`
"""
attn_mask = mask.view((mask.shape[0], 1, 1, mask.shape[1]))
for enc_layer in self.layer_stack:
x = enc_layer(
x,
mask=mask,
slf_attn_mask=attn_mask,
speaker_embedding=speaker_embedding,
encoding=encoding,
)
return x
class ConformerBlock(torch.nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
d_k: int, # pylint: disable=unused-argument
d_v: int, # pylint: disable=unused-argument
kernel_size_conv_mod: int,
speaker_embedding_dim: int,
dropout: float,
lrelu_slope: float = 0.3,
):
"""
A Conformer block is composed of four modules stacked together,
A feed-forward module, a self-attention module, a convolution module,
and a second feed-forward module in the end. The block starts with two Feed forward
modules sandwiching the Multi-Headed Self-Attention module and the Conv module.
Args:
d_model (int): The dimension of model
n_head (int): The number of attention heads.
kernel_size_conv_mod (int): Size of kernels for convolution modules.
speaker_embedding_dim (int): Number of speaker embedding dimensions.
emotion_embedding_dim (int): Number of emotion embedding dimensions.
dropout (float): Probabilty of dropout.
Inputs: inputs, mask
- **inputs** (batch, time, dim): Tensor containing input vector
- **encoding** (batch, time, dim): Positional embedding tensor
- **slf_attn_mask** (batch, 1, 1, time1): Tensor containing indices to be masked in self attention module
- **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
Returns:
- **outputs** (batch, time, dim): Tensor produced by the Conformer Block.
"""
super().__init__()
if isinstance(speaker_embedding_dim, int):
self.conditioning = Conv1dGLU(
d_model=d_model,
kernel_size=kernel_size_conv_mod,
padding=kernel_size_conv_mod // 2,
embedding_dim=speaker_embedding_dim,
)
self.ff = FeedForward(d_model=d_model, dropout=dropout, kernel_size=3, lrelu_slope=lrelu_slope)
self.conformer_conv_1 = ConformerConvModule(
d_model, kernel_size=kernel_size_conv_mod, dropout=dropout, lrelu_slope=lrelu_slope
)
self.ln = nn.LayerNorm(d_model)
self.slf_attn = ConformerMultiHeadedSelfAttention(d_model=d_model, num_heads=n_head, dropout_p=dropout)
self.conformer_conv_2 = ConformerConvModule(
d_model, kernel_size=kernel_size_conv_mod, dropout=dropout, lrelu_slope=lrelu_slope
)
def forward(
self,
x: torch.Tensor,
speaker_embedding: torch.Tensor,
mask: torch.Tensor,
slf_attn_mask: torch.Tensor,
encoding: torch.Tensor,
) -> torch.Tensor:
"""
Shapes:
- x: :math:`[B, T_src, C]`
- mask: :math: `[B]`
- slf_attn_mask: :math: `[B, 1, 1, T_src]`
- speaker_embedding: :math: `[B, C]`
- emotion_embedding: :math: `[B, C]`
- encoding: :math: `[B, T_max2, C]`
"""
if speaker_embedding is not None:
x = self.conditioning(x, embeddings=speaker_embedding)
x = self.ff(x) + x
x = self.conformer_conv_1(x) + x
res = x
x = self.ln(x)
x, _ = self.slf_attn(query=x, key=x, value=x, mask=slf_attn_mask, encoding=encoding)
x = x + res
x = x.masked_fill(mask.unsqueeze(-1), 0)
x = self.conformer_conv_2(x) + x
return x
class FeedForward(nn.Module):
def __init__(
self,
d_model: int,
kernel_size: int,
dropout: float,
lrelu_slope: float,
expansion_factor: int = 4,
):
"""
Feed Forward module for conformer block.
Args:
d_model (int): The dimension of model.
kernel_size (int): Size of the kernels for conv layers.
dropout (float): probability of dropout.
expansion_factor (int): The factor by which to project the number of channels.
lrelu_slope (int): the negative slope factor for the leaky relu activation.
Inputs: inputs
- **inputs** (batch, time, dim): Tensor containing input vector
Returns:
- **outputs** (batch, time, dim): Tensor produced by the feed forward module.
"""
super().__init__()
self.dropout = nn.Dropout(dropout)
self.ln = nn.LayerNorm(d_model)
self.conv_1 = nn.Conv1d(
d_model,
d_model * expansion_factor,
kernel_size=kernel_size,
padding=kernel_size // 2,
)
self.act = nn.LeakyReLU(lrelu_slope)
self.conv_2 = nn.Conv1d(d_model * expansion_factor, d_model, kernel_size=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Shapes:
x: :math: `[B, T, C]`
"""
x = self.ln(x)
x = x.permute((0, 2, 1))
x = self.conv_1(x)
x = x.permute((0, 2, 1))
x = self.act(x)
x = self.dropout(x)
x = x.permute((0, 2, 1))
x = self.conv_2(x)
x = x.permute((0, 2, 1))
x = self.dropout(x)
x = 0.5 * x
return x
class ConformerConvModule(nn.Module):
def __init__(
self,
d_model: int,
expansion_factor: int = 2,
kernel_size: int = 7,
dropout: float = 0.1,
lrelu_slope: float = 0.3,
):
"""
Convolution module for conformer. Starts with a gating machanism.
a pointwise convolution and a gated linear unit (GLU). This is followed
by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution
to help with training. it also contains an expansion factor to project the number of channels.
Args:
d_model (int): The dimension of model.
expansion_factor (int): The factor by which to project the number of channels.
kernel_size (int): Size of kernels for convolution modules.
dropout (float): Probabilty of dropout.
lrelu_slope (float): The slope coefficient for leaky relu activation.
Inputs: inputs
- **inputs** (batch, time, dim): Tensor containing input vector
Returns:
- **outputs** (batch, time, dim): Tensor produced by the conv module.
"""
super().__init__()
inner_dim = d_model * expansion_factor
self.ln_1 = nn.LayerNorm(d_model)
self.conv_1 = PointwiseConv1d(d_model, inner_dim * 2)
self.conv_act = GLUActivation(slope=lrelu_slope)
self.depthwise = DepthWiseConv1d(
inner_dim,
inner_dim,
kernel_size=kernel_size,
padding=calc_same_padding(kernel_size)[0],
)
self.ln_2 = nn.GroupNorm(1, inner_dim)
self.activation = nn.LeakyReLU(lrelu_slope)
self.conv_2 = PointwiseConv1d(inner_dim, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Shapes:
x: :math: `[B, T, C]`
"""
x = self.ln_1(x)
x = x.permute(0, 2, 1)
x = self.conv_1(x)
x = self.conv_act(x)
x = self.depthwise(x)
x = self.ln_2(x)
x = self.activation(x)
x = self.conv_2(x)
x = x.permute(0, 2, 1)
x = self.dropout(x)
return x
class ConformerMultiHeadedSelfAttention(nn.Module):
"""
Conformer employ multi-headed self-attention (MHSA) while integrating an important technique from Transformer-XL,
the relative sinusoidal positional encoding scheme. The relative positional encoding allows the self-attention
module to generalize better on different input length and the resulting encoder is more robust to the variance of
the utterance length. Conformer use prenorm residual units with dropout which helps training
and regularizing deeper models.
Args:
d_model (int): The dimension of model
num_heads (int): The number of attention heads.
dropout_p (float): probability of dropout
Inputs: inputs, mask
- **inputs** (batch, time, dim): Tensor containing input vector
- **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
Returns:
- **outputs** (batch, time, dim): Tensor produces by relative multi headed self attention module.
"""
def __init__(self, d_model: int, num_heads: int, dropout_p: float):
super().__init__()
self.attention = RelativeMultiHeadAttention(d_model=d_model, num_heads=num_heads)
self.dropout = nn.Dropout(p=dropout_p)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor,
encoding: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, seq_length, _ = key.size() # pylint: disable=unused-variable
encoding = encoding[:, : key.shape[1]]
encoding = encoding.repeat(batch_size, 1, 1)
outputs, attn = self.attention(query, key, value, pos_embedding=encoding, mask=mask)
outputs = self.dropout(outputs)
return outputs, attn
class RelativeMultiHeadAttention(nn.Module):
"""
Multi-head attention with relative positional encoding.
This concept was proposed in the "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
Args:
d_model (int): The dimension of model
num_heads (int): The number of attention heads.
Inputs: query, key, value, pos_embedding, mask
- **query** (batch, time, dim): Tensor containing query vector
- **key** (batch, time, dim): Tensor containing key vector
- **value** (batch, time, dim): Tensor containing value vector
- **pos_embedding** (batch, time, dim): Positional embedding tensor
- **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
Returns:
- **outputs**: Tensor produces by relative multi head attention module.
"""
def __init__(
self,
d_model: int = 512,
num_heads: int = 16,
):
super().__init__()
assert d_model % num_heads == 0, "d_model % num_heads should be zero."
self.d_model = d_model
self.d_head = int(d_model / num_heads)
self.num_heads = num_heads
self.sqrt_dim = math.sqrt(d_model)
self.query_proj = nn.Linear(d_model, d_model)
self.key_proj = nn.Linear(d_model, d_model, bias=False)
self.value_proj = nn.Linear(d_model, d_model, bias=False)
self.pos_proj = nn.Linear(d_model, d_model, bias=False)
self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
torch.nn.init.xavier_uniform_(self.u_bias)
torch.nn.init.xavier_uniform_(self.v_bias)
self.out_proj = nn.Linear(d_model, d_model)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
pos_embedding: torch.Tensor,
mask: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = query.shape[0]
query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
pos_embedding = self.pos_proj(pos_embedding).view(batch_size, -1, self.num_heads, self.d_head)
u_bias = self.u_bias.expand_as(query)
v_bias = self.v_bias.expand_as(query)
a = (query + u_bias).transpose(1, 2)
content_score = a @ key.transpose(2, 3)
b = (query + v_bias).transpose(1, 2)
pos_score = b @ pos_embedding.permute(0, 2, 3, 1)
pos_score = self._relative_shift(pos_score)
score = content_score + pos_score
score = score * (1.0 / self.sqrt_dim)
score.masked_fill_(mask, -1e9)
attn = F.softmax(score, -1)
context = (attn @ value).transpose(1, 2)
context = context.contiguous().view(batch_size, -1, self.d_model)
return self.out_proj(context), attn
def _relative_shift(self, pos_score: torch.Tensor) -> torch.Tensor: # pylint: disable=no-self-use
batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
zeros = torch.zeros((batch_size, num_heads, seq_length1, 1), device=pos_score.device)
padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
padded_pos_score = padded_pos_score.view(batch_size, num_heads, seq_length2 + 1, seq_length1)
pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)
return pos_score
class MultiHeadAttention(nn.Module):
"""
input:
query --- [N, T_q, query_dim]
key --- [N, T_k, key_dim]
output:
out --- [N, T_q, num_units]
"""
def __init__(self, query_dim: int, key_dim: int, num_units: int, num_heads: int):
super().__init__()
self.num_units = num_units
self.num_heads = num_heads
self.key_dim = key_dim
self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False)
self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
def forward(self, query: torch.Tensor, key: torch.Tensor) -> torch.Tensor:
querys = self.W_query(query) # [N, T_q, num_units]
keys = self.W_key(key) # [N, T_k, num_units]
values = self.W_value(key)
split_size = self.num_units // self.num_heads
querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h]
keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
# score = softmax(QK^T / (d_k ** 0.5))
scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k]
scores = scores / (self.key_dim**0.5)
scores = F.softmax(scores, dim=3)
# out = score * V
out = torch.matmul(scores, values) # [h, N, T_q, num_units/h]
out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units]
return out
|