Spaces:
Sleeping
Sleeping
File size: 3,663 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
from typing import Tuple
import torch
from torch import nn
class AlignmentNetwork(torch.nn.Module):
"""Aligner Network for learning alignment between the input text and the model output with Gaussian Attention.
::
query -> conv1d -> relu -> conv1d -> relu -> conv1d -> L2_dist -> softmax -> alignment
key -> conv1d -> relu -> conv1d -----------------------^
Args:
in_query_channels (int): Number of channels in the query network. Defaults to 80.
in_key_channels (int): Number of channels in the key network. Defaults to 512.
attn_channels (int): Number of inner channels in the attention layers. Defaults to 80.
temperature (float): Temperature for the softmax. Defaults to 0.0005.
"""
def __init__(
self,
in_query_channels=80,
in_key_channels=512,
attn_channels=80,
temperature=0.0005,
):
super().__init__()
self.temperature = temperature
self.softmax = torch.nn.Softmax(dim=3)
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.key_layer = nn.Sequential(
nn.Conv1d(
in_key_channels,
in_key_channels * 2,
kernel_size=3,
padding=1,
bias=True,
),
torch.nn.ReLU(),
nn.Conv1d(in_key_channels * 2, attn_channels, kernel_size=1, padding=0, bias=True),
)
self.query_layer = nn.Sequential(
nn.Conv1d(
in_query_channels,
in_query_channels * 2,
kernel_size=3,
padding=1,
bias=True,
),
torch.nn.ReLU(),
nn.Conv1d(in_query_channels * 2, in_query_channels, kernel_size=1, padding=0, bias=True),
torch.nn.ReLU(),
nn.Conv1d(in_query_channels, attn_channels, kernel_size=1, padding=0, bias=True),
)
self.init_layers()
def init_layers(self):
torch.nn.init.xavier_uniform_(self.key_layer[0].weight, gain=torch.nn.init.calculate_gain("relu"))
torch.nn.init.xavier_uniform_(self.key_layer[2].weight, gain=torch.nn.init.calculate_gain("linear"))
torch.nn.init.xavier_uniform_(self.query_layer[0].weight, gain=torch.nn.init.calculate_gain("relu"))
torch.nn.init.xavier_uniform_(self.query_layer[2].weight, gain=torch.nn.init.calculate_gain("linear"))
torch.nn.init.xavier_uniform_(self.query_layer[4].weight, gain=torch.nn.init.calculate_gain("linear"))
def forward(
self, queries: torch.tensor, keys: torch.tensor, mask: torch.tensor = None, attn_prior: torch.tensor = None
) -> Tuple[torch.tensor, torch.tensor]:
"""Forward pass of the aligner encoder.
Shapes:
- queries: :math:`[B, C, T_de]`
- keys: :math:`[B, C_emb, T_en]`
- mask: :math:`[B, T_de]`
Output:
attn (torch.tensor): :math:`[B, 1, T_en, T_de]` soft attention mask.
attn_logp (torch.tensor): :math:`[ßB, 1, T_en , T_de]` log probabilities.
"""
key_out = self.key_layer(keys)
query_out = self.query_layer(queries)
attn_factor = (query_out[:, :, :, None] - key_out[:, :, None]) ** 2
attn_logp = -self.temperature * attn_factor.sum(1, keepdim=True)
if attn_prior is not None:
attn_logp = self.log_softmax(attn_logp) + torch.log(attn_prior[:, None] + 1e-8)
if mask is not None:
attn_logp.data.masked_fill_(~mask.bool().unsqueeze(2), -float("inf"))
attn = self.softmax(attn_logp)
return attn, attn_logp
|