Spaces:
Sleeping
Sleeping
File size: 14,961 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# Adopted from https://github.com/photosynthesis-team/piq
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
def _reduce(x: torch.Tensor, reduction: str = "mean") -> torch.Tensor:
r"""Reduce input in batch dimension if needed.
Args:
x: Tensor with shape (N, *).
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'``
"""
if reduction == "none":
return x
if reduction == "mean":
return x.mean(dim=0)
if reduction == "sum":
return x.sum(dim=0)
raise ValueError("Unknown reduction. Expected one of {'none', 'mean', 'sum'}")
def _validate_input(
tensors: List[torch.Tensor],
dim_range: Tuple[int, int] = (0, -1),
data_range: Tuple[float, float] = (0.0, -1.0),
# size_dim_range: Tuple[float, float] = (0., -1.),
size_range: Optional[Tuple[int, int]] = None,
) -> None:
r"""Check that input(-s) satisfies the requirements
Args:
tensors: Tensors to check
dim_range: Allowed number of dimensions. (min, max)
data_range: Allowed range of values in tensors. (min, max)
size_range: Dimensions to include in size comparison. (start_dim, end_dim + 1)
"""
if not __debug__:
return
x = tensors[0]
for t in tensors:
assert torch.is_tensor(t), f"Expected torch.Tensor, got {type(t)}"
assert t.device == x.device, f"Expected tensors to be on {x.device}, got {t.device}"
if size_range is None:
assert t.size() == x.size(), f"Expected tensors with same size, got {t.size()} and {x.size()}"
else:
assert (
t.size()[size_range[0] : size_range[1]] == x.size()[size_range[0] : size_range[1]]
), f"Expected tensors with same size at given dimensions, got {t.size()} and {x.size()}"
if dim_range[0] == dim_range[1]:
assert t.dim() == dim_range[0], f"Expected number of dimensions to be {dim_range[0]}, got {t.dim()}"
elif dim_range[0] < dim_range[1]:
assert (
dim_range[0] <= t.dim() <= dim_range[1]
), f"Expected number of dimensions to be between {dim_range[0]} and {dim_range[1]}, got {t.dim()}"
if data_range[0] < data_range[1]:
assert data_range[0] <= t.min(), f"Expected values to be greater or equal to {data_range[0]}, got {t.min()}"
assert t.max() <= data_range[1], f"Expected values to be lower or equal to {data_range[1]}, got {t.max()}"
def gaussian_filter(kernel_size: int, sigma: float) -> torch.Tensor:
r"""Returns 2D Gaussian kernel N(0,`sigma`^2)
Args:
size: Size of the kernel
sigma: Std of the distribution
Returns:
gaussian_kernel: Tensor with shape (1, kernel_size, kernel_size)
"""
coords = torch.arange(kernel_size, dtype=torch.float32)
coords -= (kernel_size - 1) / 2.0
g = coords**2
g = (-(g.unsqueeze(0) + g.unsqueeze(1)) / (2 * sigma**2)).exp()
g /= g.sum()
return g.unsqueeze(0)
def ssim(
x: torch.Tensor,
y: torch.Tensor,
kernel_size: int = 11,
kernel_sigma: float = 1.5,
data_range: Union[int, float] = 1.0,
reduction: str = "mean",
full: bool = False,
downsample: bool = True,
k1: float = 0.01,
k2: float = 0.03,
) -> List[torch.Tensor]:
r"""Interface of Structural Similarity (SSIM) index.
Inputs supposed to be in range ``[0, data_range]``.
To match performance with skimage and tensorflow set ``'downsample' = True``.
Args:
x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`.
y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`.
kernel_size: The side-length of the sliding window used in comparison. Must be an odd value.
kernel_sigma: Sigma of normal distribution.
data_range: Maximum value range of images (usually 1.0 or 255).
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'``
full: Return cs map or not.
downsample: Perform average pool before SSIM computation. Default: True
k1: Algorithm parameter, K1 (small constant).
k2: Algorithm parameter, K2 (small constant).
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
Returns:
Value of Structural Similarity (SSIM) index. In case of 5D input tensors, complex value is returned
as a tensor of size 2.
References:
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004).
Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing, 13, 600-612.
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
DOI: `10.1109/TIP.2003.819861`
"""
assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]"
_validate_input([x, y], dim_range=(4, 5), data_range=(0, data_range))
x = x / float(data_range)
y = y / float(data_range)
# Averagepool image if the size is large enough
f = max(1, round(min(x.size()[-2:]) / 256))
if (f > 1) and downsample:
x = F.avg_pool2d(x, kernel_size=f)
y = F.avg_pool2d(y, kernel_size=f)
kernel = gaussian_filter(kernel_size, kernel_sigma).repeat(x.size(1), 1, 1, 1).to(y)
_compute_ssim_per_channel = _ssim_per_channel_complex if x.dim() == 5 else _ssim_per_channel
ssim_map, cs_map = _compute_ssim_per_channel(x=x, y=y, kernel=kernel, k1=k1, k2=k2)
ssim_val = ssim_map.mean(1)
cs = cs_map.mean(1)
ssim_val = _reduce(ssim_val, reduction)
cs = _reduce(cs, reduction)
if full:
return [ssim_val, cs]
return ssim_val
class SSIMLoss(_Loss):
r"""Creates a criterion that measures the structural similarity index error between
each element in the input :math:`x` and target :math:`y`.
To match performance with skimage and tensorflow set ``'downsample' = True``.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
SSIM = \{ssim_1,\dots,ssim_{N \times C}\}\\
ssim_{l}(x, y) = \frac{(2 \mu_x \mu_y + c_1) (2 \sigma_{xy} + c_2)}
{(\mu_x^2 +\mu_y^2 + c_1)(\sigma_x^2 +\sigma_y^2 + c_2)},
where :math:`N` is the batch size, `C` is the channel size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
SSIMLoss(x, y) =
\begin{cases}
\operatorname{mean}(1 - SSIM), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(1 - SSIM), & \text{if reduction} = \text{'sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
In case of 5D input tensors, complex value is returned as a tensor of size 2.
Args:
kernel_size: By default, the mean and covariance of a pixel is obtained
by convolution with given filter_size.
kernel_sigma: Standard deviation for Gaussian kernel.
k1: Coefficient related to c1 in the above equation.
k2: Coefficient related to c2 in the above equation.
downsample: Perform average pool before SSIM computation. Default: True
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'``
data_range: Maximum value range of images (usually 1.0 or 255).
Examples:
>>> loss = SSIMLoss()
>>> x = torch.rand(3, 3, 256, 256, requires_grad=True)
>>> y = torch.rand(3, 3, 256, 256)
>>> output = loss(x, y)
>>> output.backward()
References:
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004).
Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing, 13, 600-612.
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
DOI:`10.1109/TIP.2003.819861`
"""
__constants__ = ["kernel_size", "k1", "k2", "sigma", "kernel", "reduction"]
def __init__(
self,
kernel_size: int = 11,
kernel_sigma: float = 1.5,
k1: float = 0.01,
k2: float = 0.03,
downsample: bool = True,
reduction: str = "mean",
data_range: Union[int, float] = 1.0,
) -> None:
super().__init__()
# Generic loss parameters.
self.reduction = reduction
# Loss-specific parameters.
self.kernel_size = kernel_size
# This check might look redundant because kernel size is checked within the ssim function anyway.
# However, this check allows to fail fast when the loss is being initialised and training has not been started.
assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]"
self.kernel_sigma = kernel_sigma
self.k1 = k1
self.k2 = k2
self.downsample = downsample
self.data_range = data_range
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
r"""Computation of Structural Similarity (SSIM) index as a loss function.
Args:
x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`.
y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`.
Returns:
Value of SSIM loss to be minimized, i.e ``1 - ssim`` in [0, 1] range. In case of 5D input tensors,
complex value is returned as a tensor of size 2.
"""
score = ssim(
x=x,
y=y,
kernel_size=self.kernel_size,
kernel_sigma=self.kernel_sigma,
downsample=self.downsample,
data_range=self.data_range,
reduction=self.reduction,
full=False,
k1=self.k1,
k2=self.k2,
)
return torch.ones_like(score) - score
def _ssim_per_channel(
x: torch.Tensor,
y: torch.Tensor,
kernel: torch.Tensor,
k1: float = 0.01,
k2: float = 0.03,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
r"""Calculate Structural Similarity (SSIM) index for X and Y per channel.
Args:
x: An input tensor. Shape :math:`(N, C, H, W)`.
y: A target tensor. Shape :math:`(N, C, H, W)`.
kernel: 2D Gaussian kernel.
k1: Algorithm parameter, K1 (small constant, see [1]).
k2: Algorithm parameter, K2 (small constant, see [1]).
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
Returns:
Full Value of Structural Similarity (SSIM) index.
"""
if x.size(-1) < kernel.size(-1) or x.size(-2) < kernel.size(-2):
raise ValueError(
f"Kernel size can't be greater than actual input size. Input size: {x.size()}. "
f"Kernel size: {kernel.size()}"
)
c1 = k1**2
c2 = k2**2
n_channels = x.size(1)
mu_x = F.conv2d(x, weight=kernel, stride=1, padding=0, groups=n_channels)
mu_y = F.conv2d(y, weight=kernel, stride=1, padding=0, groups=n_channels)
mu_xx = mu_x**2
mu_yy = mu_y**2
mu_xy = mu_x * mu_y
sigma_xx = F.conv2d(x**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xx
sigma_yy = F.conv2d(y**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_yy
sigma_xy = F.conv2d(x * y, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xy
# Contrast sensitivity (CS) with alpha = beta = gamma = 1.
cs = (2.0 * sigma_xy + c2) / (sigma_xx + sigma_yy + c2)
# Structural similarity (SSIM)
ss = (2.0 * mu_xy + c1) / (mu_xx + mu_yy + c1) * cs
ssim_val = ss.mean(dim=(-1, -2))
cs = cs.mean(dim=(-1, -2))
return ssim_val, cs
def _ssim_per_channel_complex(
x: torch.Tensor,
y: torch.Tensor,
kernel: torch.Tensor,
k1: float = 0.01,
k2: float = 0.03,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
r"""Calculate Structural Similarity (SSIM) index for Complex X and Y per channel.
Args:
x: An input tensor. Shape :math:`(N, C, H, W, 2)`.
y: A target tensor. Shape :math:`(N, C, H, W, 2)`.
kernel: 2-D gauss kernel.
k1: Algorithm parameter, K1 (small constant, see [1]).
k2: Algorithm parameter, K2 (small constant, see [1]).
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
Returns:
Full Value of Complex Structural Similarity (SSIM) index.
"""
n_channels = x.size(1)
if x.size(-2) < kernel.size(-1) or x.size(-3) < kernel.size(-2):
raise ValueError(
f"Kernel size can't be greater than actual input size. Input size: {x.size()}. "
f"Kernel size: {kernel.size()}"
)
c1 = k1**2
c2 = k2**2
x_real = x[..., 0]
x_imag = x[..., 1]
y_real = y[..., 0]
y_imag = y[..., 1]
mu1_real = F.conv2d(x_real, weight=kernel, stride=1, padding=0, groups=n_channels)
mu1_imag = F.conv2d(x_imag, weight=kernel, stride=1, padding=0, groups=n_channels)
mu2_real = F.conv2d(y_real, weight=kernel, stride=1, padding=0, groups=n_channels)
mu2_imag = F.conv2d(y_imag, weight=kernel, stride=1, padding=0, groups=n_channels)
mu1_sq = mu1_real.pow(2) + mu1_imag.pow(2)
mu2_sq = mu2_real.pow(2) + mu2_imag.pow(2)
mu1_mu2_real = mu1_real * mu2_real - mu1_imag * mu2_imag
mu1_mu2_imag = mu1_real * mu2_imag + mu1_imag * mu2_real
compensation = 1.0
x_sq = x_real.pow(2) + x_imag.pow(2)
y_sq = y_real.pow(2) + y_imag.pow(2)
x_y_real = x_real * y_real - x_imag * y_imag
x_y_imag = x_real * y_imag + x_imag * y_real
sigma1_sq = F.conv2d(x_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_sq
sigma2_sq = F.conv2d(y_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu2_sq
sigma12_real = F.conv2d(x_y_real, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_real
sigma12_imag = F.conv2d(x_y_imag, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_imag
sigma12 = torch.stack((sigma12_imag, sigma12_real), dim=-1)
mu1_mu2 = torch.stack((mu1_mu2_real, mu1_mu2_imag), dim=-1)
# Set alpha = beta = gamma = 1.
cs_map = (sigma12 * 2 + c2 * compensation) / (sigma1_sq.unsqueeze(-1) + sigma2_sq.unsqueeze(-1) + c2 * compensation)
ssim_map = (mu1_mu2 * 2 + c1 * compensation) / (mu1_sq.unsqueeze(-1) + mu2_sq.unsqueeze(-1) + c1 * compensation)
ssim_map = ssim_map * cs_map
ssim_val = ssim_map.mean(dim=(-2, -3))
cs = cs_map.mean(dim=(-2, -3))
return ssim_val, cs
|