File size: 2,149 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
from urllib import request

from tqdm import tqdm

DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser("~"), ".cache", "tortoise", "models")
MODELS_DIR = os.environ.get("TORTOISE_MODELS_DIR", DEFAULT_MODELS_DIR)
MODELS_DIR = "/data/speech_synth/models/"
MODELS = {
    "autoregressive.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth",
    "classifier.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth",
    "clvp2.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth",
    "diffusion_decoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth",
    "vocoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth",
    "rlg_auto.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth",
    "rlg_diffuser.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth",
}


def download_models(specific_models=None):
    """
    Call to download all the models that Tortoise uses.
    """
    os.makedirs(MODELS_DIR, exist_ok=True)
    for model_name, url in MODELS.items():
        if specific_models is not None and model_name not in specific_models:
            continue
        model_path = os.path.join(MODELS_DIR, model_name)
        if os.path.exists(model_path):
            continue
        print(f"Downloading {model_name} from {url}...")
        with tqdm(unit="B", unit_scale=True, unit_divisor=1024, miniters=1) as t:
            request.urlretrieve(url, model_path, lambda nb, bs, fs, t=t: t.update(nb * bs - t.n))
        print("Done.")


def get_model_path(model_name, models_dir=MODELS_DIR):
    """
    Get path to given model, download it if it doesn't exist.
    """
    if model_name not in MODELS:
        raise ValueError(f"Model {model_name} not found in available models.")
    model_path = os.path.join(models_dir, model_name)
    if not os.path.exists(model_path) and models_dir == MODELS_DIR:
        download_models([model_name])
    return model_path