|
import os |
|
import random |
|
from contextlib import contextmanager |
|
from dataclasses import dataclass |
|
from time import time |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from coqpit import Coqpit |
|
from tqdm import tqdm |
|
|
|
from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram |
|
from TTS.tts.layers.tortoise.audio_utils import denormalize_tacotron_mel, load_voice, wav_to_univnet_mel |
|
from TTS.tts.layers.tortoise.autoregressive import UnifiedVoice |
|
from TTS.tts.layers.tortoise.classifier import AudioMiniEncoderWithClassifierHead |
|
from TTS.tts.layers.tortoise.clvp import CLVP |
|
from TTS.tts.layers.tortoise.diffusion import SpacedDiffusion, get_named_beta_schedule, space_timesteps |
|
from TTS.tts.layers.tortoise.diffusion_decoder import DiffusionTts |
|
from TTS.tts.layers.tortoise.random_latent_generator import RandomLatentConverter |
|
from TTS.tts.layers.tortoise.tokenizer import VoiceBpeTokenizer |
|
from TTS.tts.layers.tortoise.vocoder import VocConf, VocType |
|
from TTS.tts.layers.tortoise.wav2vec_alignment import Wav2VecAlignment |
|
from TTS.tts.models.base_tts import BaseTTS |
|
|
|
|
|
def pad_or_truncate(t, length): |
|
""" |
|
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s. |
|
""" |
|
tp = t[..., :length] |
|
if t.shape[-1] == length: |
|
tp = t |
|
elif t.shape[-1] < length: |
|
tp = F.pad(t, (0, length - t.shape[-1])) |
|
return tp |
|
|
|
|
|
def deterministic_state(seed=None): |
|
""" |
|
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be |
|
reproduced. |
|
""" |
|
seed = int(time()) if seed is None else seed |
|
torch.manual_seed(seed) |
|
random.seed(seed) |
|
|
|
|
|
|
|
return seed |
|
|
|
|
|
def load_discrete_vocoder_diffuser( |
|
trained_diffusion_steps=4000, |
|
desired_diffusion_steps=200, |
|
cond_free=True, |
|
cond_free_k=1, |
|
sampler="ddim", |
|
): |
|
""" |
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder. |
|
""" |
|
return SpacedDiffusion( |
|
use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), |
|
model_mean_type="epsilon", |
|
model_var_type="learned_range", |
|
loss_type="mse", |
|
betas=get_named_beta_schedule("linear", trained_diffusion_steps), |
|
conditioning_free=cond_free, |
|
conditioning_free_k=cond_free_k, |
|
sampler=sampler, |
|
) |
|
|
|
|
|
def format_conditioning(clip, cond_length=132300, device="cuda", **kwargs): |
|
""" |
|
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. |
|
""" |
|
gap = clip.shape[-1] - cond_length |
|
if gap < 0: |
|
clip = F.pad(clip, pad=(0, abs(gap))) |
|
elif gap > 0: |
|
rand_start = random.randint(0, gap) |
|
clip = clip[:, rand_start : rand_start + cond_length] |
|
mel_clip = TorchMelSpectrogram(**kwargs)(clip.unsqueeze(0)).squeeze(0) |
|
return mel_clip.unsqueeze(0).to(device) |
|
|
|
|
|
def fix_autoregressive_output(codes, stop_token, complain=True): |
|
""" |
|
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was |
|
trained on and what the autoregressive code generator creates (which has no padding or end). |
|
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with |
|
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE |
|
and copying out the last few codes. |
|
|
|
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. |
|
""" |
|
|
|
stop_token_indices = (codes == stop_token).nonzero() |
|
if len(stop_token_indices) == 0: |
|
if complain: |
|
print( |
|
"No stop tokens found in one of the generated voice clips. This typically means the spoken audio is " |
|
"too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, " |
|
"try breaking up your input text." |
|
) |
|
return codes |
|
codes[stop_token_indices] = 83 |
|
stm = stop_token_indices.min().item() |
|
codes[stm:] = 83 |
|
if stm - 3 < codes.shape[0]: |
|
codes[-3] = 45 |
|
codes[-2] = 45 |
|
codes[-1] = 248 |
|
return codes |
|
|
|
|
|
def do_spectrogram_diffusion( |
|
diffusion_model, |
|
diffuser, |
|
latents, |
|
conditioning_latents, |
|
temperature=1, |
|
verbose=True, |
|
): |
|
""" |
|
Uses the specified diffusion model to convert discrete codes into a spectrogram. |
|
""" |
|
with torch.no_grad(): |
|
output_seq_len = ( |
|
latents.shape[1] * 4 * 24000 // 22050 |
|
) |
|
output_shape = (latents.shape[0], 100, output_seq_len) |
|
precomputed_embeddings = diffusion_model.timestep_independent( |
|
latents, conditioning_latents, output_seq_len, False |
|
) |
|
|
|
noise = torch.randn(output_shape, device=latents.device) * temperature |
|
mel = diffuser.sample_loop( |
|
diffusion_model, |
|
output_shape, |
|
noise=noise, |
|
model_kwargs={"precomputed_aligned_embeddings": precomputed_embeddings}, |
|
progress=verbose, |
|
) |
|
return denormalize_tacotron_mel(mel)[:, :, :output_seq_len] |
|
|
|
|
|
def classify_audio_clip(clip, model_dir): |
|
""" |
|
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. |
|
:param clip: torch tensor containing audio waveform data (get it from load_audio) |
|
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real. |
|
""" |
|
classifier = AudioMiniEncoderWithClassifierHead( |
|
2, |
|
spec_dim=1, |
|
embedding_dim=512, |
|
depth=5, |
|
downsample_factor=4, |
|
resnet_blocks=2, |
|
attn_blocks=4, |
|
num_attn_heads=4, |
|
base_channels=32, |
|
dropout=0, |
|
kernel_size=5, |
|
distribute_zero_label=False, |
|
) |
|
classifier.load_state_dict(torch.load(os.path.join(model_dir, "classifier.pth"), map_location=torch.device("cpu"))) |
|
clip = clip.cpu().unsqueeze(0) |
|
results = F.softmax(classifier(clip), dim=-1) |
|
return results[0][0] |
|
|
|
|
|
def pick_best_batch_size_for_gpu(): |
|
""" |
|
Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give |
|
you a good shot. |
|
""" |
|
if torch.cuda.is_available(): |
|
_, available = torch.cuda.mem_get_info() |
|
availableGb = available / (1024**3) |
|
batch_size = 1 |
|
if availableGb > 14: |
|
batch_size = 16 |
|
elif availableGb > 10: |
|
batch_size = 8 |
|
elif availableGb > 7: |
|
batch_size = 4 |
|
return batch_size |
|
|
|
|
|
@dataclass |
|
class TortoiseAudioConfig(Coqpit): |
|
sample_rate: int = 22050 |
|
diffusion_sample_rate: int = 24000 |
|
output_sample_rate: int = 24000 |
|
|
|
|
|
@dataclass |
|
class TortoiseArgs(Coqpit): |
|
"""A dataclass to represent Tortoise model arguments that define the model structure. |
|
|
|
Args: |
|
autoregressive_batch_size (int): The size of the auto-regressive batch. |
|
enable_redaction (bool, optional): Whether to enable redaction. Defaults to True. |
|
high_vram (bool, optional): Whether to use high VRAM. Defaults to False. |
|
kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True. |
|
ar_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None. |
|
clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None. |
|
diff_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None. |
|
num_chars (int, optional): The maximum number of characters to generate. Defaults to 255. |
|
vocoder (VocType, optional): The vocoder to use for synthesis. Defaults to VocConf.Univnet. |
|
|
|
For UnifiedVoice model: |
|
ar_max_mel_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604. |
|
ar_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402. |
|
ar_max_conditioning_inputs (int, optional): The maximum conditioning inputs for the autoregressive model. Defaults to 2. |
|
ar_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30. |
|
ar_model_dim (int, optional): The model dimension for the autoregressive model. Defaults to 1024. |
|
ar_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16. |
|
ar_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255. |
|
ar_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255. |
|
ar_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False. |
|
ar_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False. |
|
|
|
For DiffTTS model: |
|
diff_model_channels (int, optional): The number of channels for the DiffTTS model. Defaults to 1024. |
|
diff_num_layers (int, optional): The number of layers for the DiffTTS model. Defaults to 10. |
|
diff_in_channels (int, optional): The input channels for the DiffTTS model. Defaults to 100. |
|
diff_out_channels (int, optional): The output channels for the DiffTTS model. Defaults to 200. |
|
diff_in_latent_channels (int, optional): The input latent channels for the DiffTTS model. Defaults to 1024. |
|
diff_in_tokens (int, optional): The input tokens for the DiffTTS model. Defaults to 8193. |
|
diff_dropout (int, optional): The dropout percentage for the DiffTTS model. Defaults to 0. |
|
diff_use_fp16 (bool, optional): Whether to use fp16 for the DiffTTS model. Defaults to False. |
|
diff_num_heads (int, optional): The number of heads for the DiffTTS model. Defaults to 16. |
|
diff_layer_drop (int, optional): The layer dropout percentage for the DiffTTS model. Defaults to 0. |
|
diff_unconditioned_percentage (int, optional): The percentage of unconditioned inputs for the DiffTTS model. Defaults to 0. |
|
|
|
For ConditionalLatentVariablePerseq model: |
|
clvp_dim_text (int): The dimension of the text input for the CLVP module. Defaults to 768. |
|
clvp_dim_speech (int): The dimension of the speech input for the CLVP module. Defaults to 768. |
|
clvp_dim_latent (int): The dimension of the latent representation for the CLVP module. Defaults to 768. |
|
clvp_num_text_tokens (int): The number of text tokens used by the CLVP module. Defaults to 256. |
|
clvp_text_enc_depth (int): The depth of the text encoder in the CLVP module. Defaults to 20. |
|
clvp_text_seq_len (int): The maximum sequence length of the text input for the CLVP module. Defaults to 350. |
|
clvp_text_heads (int): The number of attention heads used by the text encoder in the CLVP module. Defaults to 12. |
|
clvp_num_speech_tokens (int): The number of speech tokens used by the CLVP module. Defaults to 8192. |
|
clvp_speech_enc_depth (int): The depth of the speech encoder in the CLVP module. Defaults to 20. |
|
clvp_speech_heads (int): The number of attention heads used by the speech encoder in the CLVP module. Defaults to 12. |
|
clvp_speech_seq_len (int): The maximum sequence length of the speech input for the CLVP module. Defaults to 430. |
|
clvp_use_xformers (bool): A flag indicating whether the model uses transformers in the CLVP module. Defaults to True. |
|
duration_const (int): A constant value used in the model. Defaults to 102400. |
|
""" |
|
|
|
autoregressive_batch_size: int = 1 |
|
enable_redaction: bool = False |
|
high_vram: bool = False |
|
kv_cache: bool = True |
|
ar_checkpoint: str = None |
|
clvp_checkpoint: str = None |
|
diff_checkpoint: str = None |
|
num_chars: int = 255 |
|
vocoder: VocType = VocConf.Univnet |
|
|
|
|
|
ar_max_mel_tokens: int = 604 |
|
ar_max_text_tokens: int = 402 |
|
ar_max_conditioning_inputs: int = 2 |
|
ar_layers: int = 30 |
|
ar_model_dim: int = 1024 |
|
ar_heads: int = 16 |
|
ar_number_text_tokens: int = 255 |
|
ar_start_text_token: int = 255 |
|
ar_checkpointing: bool = False |
|
ar_train_solo_embeddings: bool = False |
|
|
|
|
|
diff_model_channels: int = 1024 |
|
diff_num_layers: int = 10 |
|
diff_in_channels: int = 100 |
|
diff_out_channels: int = 200 |
|
diff_in_latent_channels: int = 1024 |
|
diff_in_tokens: int = 8193 |
|
diff_dropout: int = 0 |
|
diff_use_fp16: bool = False |
|
diff_num_heads: int = 16 |
|
diff_layer_drop: int = 0 |
|
diff_unconditioned_percentage: int = 0 |
|
|
|
|
|
clvp_dim_text: int = 768 |
|
clvp_dim_speech: int = 768 |
|
clvp_dim_latent: int = 768 |
|
clvp_num_text_tokens: int = 256 |
|
clvp_text_enc_depth: int = 20 |
|
clvp_text_seq_len: int = 350 |
|
clvp_text_heads: int = 12 |
|
clvp_num_speech_tokens: int = 8192 |
|
clvp_speech_enc_depth: int = 20 |
|
clvp_speech_heads: int = 12 |
|
clvp_speech_seq_len: int = 430 |
|
clvp_use_xformers: bool = True |
|
|
|
duration_const: int = 102400 |
|
|
|
|
|
class Tortoise(BaseTTS): |
|
"""Tortoise model class. |
|
|
|
Currently only supports inference. |
|
|
|
Examples: |
|
>>> from TTS.tts.configs.tortoise_config import TortoiseConfig |
|
>>> from TTS.tts.models.tortoise import Tortoise |
|
>>> config = TortoiseConfig() |
|
>>> model = Tortoise.inif_from_config(config) |
|
>>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True) |
|
""" |
|
|
|
def __init__(self, config: Coqpit): |
|
super().__init__(config, ap=None, tokenizer=None) |
|
self.mel_norm_path = None |
|
self.config = config |
|
self.ar_checkpoint = self.args.ar_checkpoint |
|
self.diff_checkpoint = self.args.diff_checkpoint |
|
self.models_dir = config.model_dir |
|
self.autoregressive_batch_size = ( |
|
pick_best_batch_size_for_gpu() |
|
if self.args.autoregressive_batch_size is None |
|
else self.args.autoregressive_batch_size |
|
) |
|
self.enable_redaction = self.args.enable_redaction |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
if self.enable_redaction: |
|
self.aligner = Wav2VecAlignment() |
|
|
|
self.tokenizer = VoiceBpeTokenizer() |
|
|
|
self.autoregressive = UnifiedVoice( |
|
max_mel_tokens=self.args.ar_max_mel_tokens, |
|
max_text_tokens=self.args.ar_max_text_tokens, |
|
max_conditioning_inputs=self.args.ar_max_conditioning_inputs, |
|
layers=self.args.ar_layers, |
|
model_dim=self.args.ar_model_dim, |
|
heads=self.args.ar_heads, |
|
number_text_tokens=self.args.ar_number_text_tokens, |
|
start_text_token=self.args.ar_start_text_token, |
|
checkpointing=self.args.ar_checkpointing, |
|
train_solo_embeddings=self.args.ar_train_solo_embeddings, |
|
).cpu() |
|
|
|
self.diffusion = DiffusionTts( |
|
model_channels=self.args.diff_model_channels, |
|
num_layers=self.args.diff_num_layers, |
|
in_channels=self.args.diff_in_channels, |
|
out_channels=self.args.diff_out_channels, |
|
in_latent_channels=self.args.diff_in_latent_channels, |
|
in_tokens=self.args.diff_in_tokens, |
|
dropout=self.args.diff_dropout, |
|
use_fp16=self.args.diff_use_fp16, |
|
num_heads=self.args.diff_num_heads, |
|
layer_drop=self.args.diff_layer_drop, |
|
unconditioned_percentage=self.args.diff_unconditioned_percentage, |
|
).cpu() |
|
|
|
self.clvp = CLVP( |
|
dim_text=self.args.clvp_dim_text, |
|
dim_speech=self.args.clvp_dim_speech, |
|
dim_latent=self.args.clvp_dim_latent, |
|
num_text_tokens=self.args.clvp_num_text_tokens, |
|
text_enc_depth=self.args.clvp_text_enc_depth, |
|
text_seq_len=self.args.clvp_text_seq_len, |
|
text_heads=self.args.clvp_text_heads, |
|
num_speech_tokens=self.args.clvp_num_speech_tokens, |
|
speech_enc_depth=self.args.clvp_speech_enc_depth, |
|
speech_heads=self.args.clvp_speech_heads, |
|
speech_seq_len=self.args.clvp_speech_seq_len, |
|
use_xformers=self.args.clvp_use_xformers, |
|
).cpu() |
|
|
|
self.vocoder = self.args.vocoder.value.constructor().cpu() |
|
|
|
|
|
self.rlg_auto = None |
|
self.rlg_diffusion = None |
|
|
|
if self.args.high_vram: |
|
self.autoregressive = self.autoregressive.to(self.device) |
|
self.diffusion = self.diffusion.to(self.device) |
|
self.clvp = self.clvp.to(self.device) |
|
self.vocoder = self.vocoder.to(self.device) |
|
self.high_vram = self.args.high_vram |
|
|
|
@contextmanager |
|
def temporary_cuda(self, model): |
|
if self.high_vram: |
|
yield model |
|
else: |
|
m = model.to(self.device) |
|
yield m |
|
m = model.cpu() |
|
|
|
def get_conditioning_latents( |
|
self, |
|
voice_samples, |
|
return_mels=False, |
|
latent_averaging_mode=0, |
|
original_tortoise=False, |
|
): |
|
""" |
|
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent). |
|
These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic |
|
properties. |
|
:param voice_samples: List of arbitrary reference clips, which should be *pairs* of torch tensors containing arbitrary kHz waveform data. |
|
:param latent_averaging_mode: 0/1/2 for following modes: |
|
0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples |
|
1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks |
|
2 - latents will be generated using (almost) entire voice samples, averaged per voice sample |
|
""" |
|
assert latent_averaging_mode in [ |
|
0, |
|
1, |
|
2, |
|
], "latent_averaging mode has to be one of (0, 1, 2)" |
|
|
|
with torch.no_grad(): |
|
voice_samples = [[v.to(self.device) for v in ls] for ls in voice_samples] |
|
|
|
auto_conds = [] |
|
for ls in voice_samples: |
|
auto_conds.append(format_conditioning(ls[0], device=self.device, mel_norm_file=self.mel_norm_path)) |
|
auto_conds = torch.stack(auto_conds, dim=1) |
|
with self.temporary_cuda(self.autoregressive) as ar: |
|
auto_latent = ar.get_conditioning(auto_conds) |
|
|
|
diffusion_conds = [] |
|
|
|
DURS_CONST = self.args.duration_const |
|
for ls in voice_samples: |
|
|
|
sample = torchaudio.functional.resample(ls[0], 22050, 24000) if original_tortoise else ls[1] |
|
if latent_averaging_mode == 0: |
|
sample = pad_or_truncate(sample, DURS_CONST) |
|
cond_mel = wav_to_univnet_mel( |
|
sample.to(self.device), |
|
do_normalization=False, |
|
device=self.device, |
|
) |
|
diffusion_conds.append(cond_mel) |
|
else: |
|
from math import ceil |
|
|
|
if latent_averaging_mode == 2: |
|
temp_diffusion_conds = [] |
|
for chunk in range(ceil(sample.shape[1] / DURS_CONST)): |
|
current_sample = sample[:, chunk * DURS_CONST : (chunk + 1) * DURS_CONST] |
|
current_sample = pad_or_truncate(current_sample, DURS_CONST) |
|
cond_mel = wav_to_univnet_mel( |
|
current_sample.to(self.device), |
|
do_normalization=False, |
|
device=self.device, |
|
) |
|
if latent_averaging_mode == 1: |
|
diffusion_conds.append(cond_mel) |
|
elif latent_averaging_mode == 2: |
|
temp_diffusion_conds.append(cond_mel) |
|
if latent_averaging_mode == 2: |
|
diffusion_conds.append(torch.stack(temp_diffusion_conds).mean(0)) |
|
diffusion_conds = torch.stack(diffusion_conds, dim=1) |
|
|
|
with self.temporary_cuda(self.diffusion) as diffusion: |
|
diffusion_latent = diffusion.get_conditioning(diffusion_conds) |
|
|
|
if return_mels: |
|
return auto_latent, diffusion_latent, auto_conds, diffusion_conds |
|
return auto_latent, diffusion_latent |
|
|
|
def get_random_conditioning_latents(self): |
|
|
|
if self.rlg_auto is None: |
|
self.rlg_auto = RandomLatentConverter(1024).eval() |
|
self.rlg_auto.load_state_dict( |
|
torch.load( |
|
os.path.join(self.models_dir, "rlg_auto.pth"), |
|
map_location=torch.device("cpu"), |
|
) |
|
) |
|
self.rlg_diffusion = RandomLatentConverter(2048).eval() |
|
self.rlg_diffusion.load_state_dict( |
|
torch.load( |
|
os.path.join(self.models_dir, "rlg_diffuser.pth"), |
|
map_location=torch.device("cpu"), |
|
) |
|
) |
|
with torch.no_grad(): |
|
return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0])) |
|
|
|
def synthesize(self, text, config, speaker_id="random", voice_dirs=None, **kwargs): |
|
"""Synthesize speech with the given input text. |
|
|
|
Args: |
|
text (str): Input text. |
|
config (TortoiseConfig): Config with inference parameters. |
|
speaker_id (str): One of the available speaker names. If `random`, it generates a random speaker. |
|
voice_dirs (List[str]): List of paths that host reference audio files for speakers. Defaults to None. |
|
**kwargs: Inference settings. See `inference()`. |
|
|
|
Returns: |
|
A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference, |
|
`text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents` |
|
as latents used at inference. |
|
|
|
""" |
|
|
|
speaker_id = "random" if speaker_id is None else speaker_id |
|
|
|
if voice_dirs is not None: |
|
voice_dirs = [voice_dirs] |
|
voice_samples, conditioning_latents = load_voice(speaker_id, voice_dirs) |
|
|
|
else: |
|
voice_samples, conditioning_latents = load_voice(speaker_id) |
|
|
|
outputs = self.inference_with_config( |
|
text, config, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **kwargs |
|
) |
|
|
|
return_dict = { |
|
"wav": outputs["wav"], |
|
"deterministic_seed": outputs["deterministic_seed"], |
|
"text_inputs": outputs["text"], |
|
"voice_samples": outputs["voice_samples"], |
|
"conditioning_latents": outputs["conditioning_latents"], |
|
} |
|
|
|
return return_dict |
|
|
|
def inference_with_config(self, text, config, **kwargs): |
|
""" |
|
inference with config |
|
#TODO describe in detail |
|
""" |
|
|
|
settings = { |
|
"temperature": config.temperature, |
|
"length_penalty": config.length_penalty, |
|
"repetition_penalty": config.repetition_penalty, |
|
"top_p": config.top_p, |
|
"cond_free_k": config.cond_free_k, |
|
"diffusion_temperature": config.diffusion_temperature, |
|
"sampler": config.sampler, |
|
} |
|
|
|
presets = { |
|
"single_sample": { |
|
"num_autoregressive_samples": 8, |
|
"diffusion_iterations": 10, |
|
"sampler": "ddim", |
|
}, |
|
"ultra_fast": { |
|
"num_autoregressive_samples": 16, |
|
"diffusion_iterations": 10, |
|
"sampler": "ddim", |
|
}, |
|
"ultra_fast_old": { |
|
"num_autoregressive_samples": 16, |
|
"diffusion_iterations": 30, |
|
"cond_free": False, |
|
}, |
|
"very_fast": { |
|
"num_autoregressive_samples": 32, |
|
"diffusion_iterations": 30, |
|
"sampler": "dpm++2m", |
|
}, |
|
"fast": { |
|
"num_autoregressive_samples": 5, |
|
"diffusion_iterations": 50, |
|
"sampler": "ddim", |
|
}, |
|
"fast_old": {"num_autoregressive_samples": 96, "diffusion_iterations": 80}, |
|
"standard": { |
|
"num_autoregressive_samples": 5, |
|
"diffusion_iterations": 200, |
|
}, |
|
"high_quality": { |
|
"num_autoregressive_samples": 256, |
|
"diffusion_iterations": 400, |
|
}, |
|
} |
|
if "preset" in kwargs: |
|
settings.update(presets[kwargs["preset"]]) |
|
kwargs.pop("preset") |
|
settings.update(kwargs) |
|
return self.inference(text, **settings) |
|
|
|
def inference( |
|
self, |
|
text, |
|
voice_samples=None, |
|
conditioning_latents=None, |
|
k=1, |
|
verbose=True, |
|
use_deterministic_seed=None, |
|
return_deterministic_state=False, |
|
latent_averaging_mode=0, |
|
|
|
num_autoregressive_samples=16, |
|
temperature=0.8, |
|
length_penalty=1, |
|
repetition_penalty=2.0, |
|
top_p=0.8, |
|
max_mel_tokens=500, |
|
|
|
diffusion_iterations=100, |
|
cond_free=True, |
|
cond_free_k=2, |
|
diffusion_temperature=1.0, |
|
sampler="ddim", |
|
half=True, |
|
original_tortoise=False, |
|
**hf_generate_kwargs, |
|
): |
|
""" |
|
This function produces an audio clip of the given text being spoken with the given reference voice. |
|
|
|
Args: |
|
text: (str) Text to be spoken. |
|
voice_samples: (List[Tuple[torch.Tensor]]) List of an arbitrary number of reference clips, which should be tuple-pairs |
|
of torch tensors containing arbitrary kHz waveform data. |
|
conditioning_latents: (Tuple[autoregressive_conditioning_latent, diffusion_conditioning_latent]) A tuple of |
|
(autoregressive_conditioning_latent, diffusion_conditioning_latent), which can be provided in lieu |
|
of voice_samples. This is ignored unless `voice_samples=None`. Conditioning latents can be retrieved |
|
via `get_conditioning_latents()`. |
|
k: (int) The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned. |
|
latent_averaging_mode: (int) 0/1/2 for following modes: |
|
0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples |
|
1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks |
|
2 - latents will be generated using (almost) entire voice samples, averaged per voice sample |
|
verbose: (bool) Whether or not to print log messages indicating the progress of creating a clip. Default=true. |
|
num_autoregressive_samples: (int) Number of samples taken from the autoregressive model, all of which are filtered using CLVP. |
|
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". |
|
temperature: (float) The softmax temperature of the autoregressive model. |
|
length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. |
|
repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce |
|
the incidence of long silences or "uhhhhhhs", etc. |
|
top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. |
|
max_mel_tokens: (int) Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. |
|
typical_sampling: (bool) Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666 |
|
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but could use some tuning. |
|
typical_mass: (float) The typical_mass parameter from the typical_sampling algorithm. |
|
diffusion_iterations: (int) Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively |
|
refine the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, however. |
|
cond_free: (bool) Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for |
|
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output of the two |
|
is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and dramatically improves realism. |
|
cond_free_k: (float) Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. |
|
As cond_free_k increases, the output becomes dominated by the conditioning-free signal. |
|
diffusion_temperature: (float) Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 |
|
are the "mean" prediction of the diffusion network and will sound bland and smeared. |
|
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive transformer. |
|
Extra keyword args fed to this function get forwarded directly to that API. Documentation |
|
here: https://huggingface.co/docs/transformers/internal/generation_utils |
|
|
|
Returns: |
|
Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. |
|
Sample rate is 24kHz. |
|
""" |
|
deterministic_seed = deterministic_state(seed=use_deterministic_seed) |
|
|
|
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device) |
|
text_tokens = F.pad(text_tokens, (0, 1)) |
|
assert ( |
|
text_tokens.shape[-1] < 400 |
|
), "Too much text provided. Break the text up into separate segments and re-try inference." |
|
|
|
if voice_samples is not None: |
|
( |
|
auto_conditioning, |
|
diffusion_conditioning, |
|
_, |
|
_, |
|
) = self.get_conditioning_latents( |
|
voice_samples, |
|
return_mels=True, |
|
latent_averaging_mode=latent_averaging_mode, |
|
original_tortoise=original_tortoise, |
|
) |
|
elif conditioning_latents is not None: |
|
auto_conditioning, diffusion_conditioning = conditioning_latents |
|
else: |
|
( |
|
auto_conditioning, |
|
diffusion_conditioning, |
|
) = self.get_random_conditioning_latents() |
|
auto_conditioning = auto_conditioning.to(self.device) |
|
diffusion_conditioning = diffusion_conditioning.to(self.device) |
|
|
|
diffuser = load_discrete_vocoder_diffuser( |
|
desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k, sampler=sampler |
|
) |
|
|
|
|
|
orig_batch_size = self.autoregressive_batch_size |
|
while num_autoregressive_samples % self.autoregressive_batch_size: |
|
self.autoregressive_batch_size //= 2 |
|
with torch.no_grad(): |
|
samples = [] |
|
num_batches = num_autoregressive_samples // self.autoregressive_batch_size |
|
stop_mel_token = self.autoregressive.stop_mel_token |
|
calm_token = ( |
|
83 |
|
) |
|
self.autoregressive = self.autoregressive.to(self.device) |
|
if verbose: |
|
print("Generating autoregressive samples..") |
|
with self.temporary_cuda(self.autoregressive) as autoregressive, torch.autocast( |
|
device_type="cuda", dtype=torch.float16, enabled=half |
|
): |
|
for b in tqdm(range(num_batches), disable=not verbose): |
|
codes = autoregressive.inference_speech( |
|
auto_conditioning, |
|
text_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
num_return_sequences=self.autoregressive_batch_size, |
|
length_penalty=length_penalty, |
|
repetition_penalty=repetition_penalty, |
|
max_generate_length=max_mel_tokens, |
|
**hf_generate_kwargs, |
|
) |
|
padding_needed = max_mel_tokens - codes.shape[1] |
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) |
|
samples.append(codes) |
|
self.autoregressive_batch_size = orig_batch_size |
|
|
|
clip_results = [] |
|
with self.temporary_cuda(self.clvp) as clvp, torch.autocast( |
|
device_type="cuda", dtype=torch.float16, enabled=half |
|
): |
|
for batch in tqdm(samples, disable=not verbose): |
|
for i in range(batch.shape[0]): |
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) |
|
clvp_res = clvp( |
|
text_tokens.repeat(batch.shape[0], 1), |
|
batch, |
|
return_loss=False, |
|
) |
|
clip_results.append(clvp_res) |
|
|
|
clip_results = torch.cat(clip_results, dim=0) |
|
samples = torch.cat(samples, dim=0) |
|
best_results = samples[torch.topk(clip_results, k=k).indices] |
|
del samples |
|
|
|
|
|
|
|
|
|
with self.temporary_cuda(self.autoregressive) as autoregressive: |
|
best_latents = autoregressive( |
|
auto_conditioning.repeat(k, 1), |
|
text_tokens.repeat(k, 1), |
|
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), |
|
best_results, |
|
torch.tensor( |
|
[best_results.shape[-1] * self.autoregressive.mel_length_compression], |
|
device=text_tokens.device, |
|
), |
|
return_latent=True, |
|
clip_inputs=False, |
|
) |
|
del auto_conditioning |
|
|
|
if verbose: |
|
print("Transforming autoregressive outputs into audio..") |
|
wav_candidates = [] |
|
for b in range(best_results.shape[0]): |
|
codes = best_results[b].unsqueeze(0) |
|
latents = best_latents[b].unsqueeze(0) |
|
|
|
|
|
ctokens = 0 |
|
for code in range(codes.shape[-1]): |
|
if codes[0, code] == calm_token: |
|
ctokens += 1 |
|
else: |
|
ctokens = 0 |
|
if ctokens > 8: |
|
latents = latents[:, :code] |
|
break |
|
with self.temporary_cuda(self.diffusion) as diffusion: |
|
mel = do_spectrogram_diffusion( |
|
diffusion, |
|
diffuser, |
|
latents, |
|
diffusion_conditioning, |
|
temperature=diffusion_temperature, |
|
verbose=verbose, |
|
) |
|
with self.temporary_cuda(self.vocoder) as vocoder: |
|
wav = vocoder.inference(mel) |
|
wav_candidates.append(wav.cpu()) |
|
|
|
def potentially_redact(clip, text): |
|
if self.enable_redaction: |
|
return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1) |
|
return clip |
|
|
|
wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates] |
|
|
|
if len(wav_candidates) > 1: |
|
res = wav_candidates |
|
else: |
|
res = wav_candidates[0] |
|
|
|
return_dict = { |
|
"wav": res, |
|
"deterministic_seed": None, |
|
"text": None, |
|
"voice_samples": None, |
|
"conditioning_latents": None, |
|
} |
|
if return_deterministic_state: |
|
return_dict = { |
|
"wav": res, |
|
"deterministic_seed": deterministic_seed, |
|
"text": text, |
|
"voice_samples": voice_samples, |
|
"conditioning_latents": conditioning_latents, |
|
} |
|
return return_dict |
|
|
|
def forward(self): |
|
raise NotImplementedError("Tortoise Training is not implemented") |
|
|
|
def eval_step(self): |
|
raise NotImplementedError("Tortoise Training is not implemented") |
|
|
|
@staticmethod |
|
def init_from_config(config: "TortoiseConfig", **kwargs): |
|
return Tortoise(config) |
|
|
|
def load_checkpoint( |
|
self, |
|
config, |
|
checkpoint_dir, |
|
ar_checkpoint_path=None, |
|
diff_checkpoint_path=None, |
|
clvp_checkpoint_path=None, |
|
vocoder_checkpoint_path=None, |
|
eval=False, |
|
strict=True, |
|
**kwargs, |
|
): |
|
"""Load a model checkpoints from a directory. This model is with multiple checkpoint files and it |
|
expects to have all the files to be under the given `checkpoint_dir` with the rigth names. |
|
If eval is True, set the model to eval mode. |
|
|
|
Args: |
|
config (TortoiseConfig): The model config. |
|
checkpoint_dir (str): The directory where the checkpoints are stored. |
|
ar_checkpoint_path (str, optional): The path to the autoregressive checkpoint. Defaults to None. |
|
diff_checkpoint_path (str, optional): The path to the diffusion checkpoint. Defaults to None. |
|
clvp_checkpoint_path (str, optional): The path to the CLVP checkpoint. Defaults to None. |
|
vocoder_checkpoint_path (str, optional): The path to the vocoder checkpoint. Defaults to None. |
|
eval (bool, optional): Whether to set the model to eval mode. Defaults to False. |
|
strict (bool, optional): Whether to load the model strictly. Defaults to True. |
|
""" |
|
if self.models_dir is None: |
|
self.models_dir = checkpoint_dir |
|
ar_path = ar_checkpoint_path or os.path.join(checkpoint_dir, "autoregressive.pth") |
|
diff_path = diff_checkpoint_path or os.path.join(checkpoint_dir, "diffusion_decoder.pth") |
|
clvp_path = clvp_checkpoint_path or os.path.join(checkpoint_dir, "clvp2.pth") |
|
vocoder_checkpoint_path = vocoder_checkpoint_path or os.path.join(checkpoint_dir, "vocoder.pth") |
|
self.mel_norm_path = os.path.join(checkpoint_dir, "mel_norms.pth") |
|
|
|
if os.path.exists(ar_path): |
|
|
|
checkpoint = torch.load(ar_path, map_location=torch.device("cpu")) |
|
|
|
|
|
|
|
self.autoregressive.load_state_dict(checkpoint, strict=False) |
|
|
|
if os.path.exists(diff_path): |
|
self.diffusion.load_state_dict(torch.load(diff_path), strict=strict) |
|
|
|
if os.path.exists(clvp_path): |
|
self.clvp.load_state_dict(torch.load(clvp_path), strict=strict) |
|
|
|
if os.path.exists(vocoder_checkpoint_path): |
|
self.vocoder.load_state_dict( |
|
config.model_args.vocoder.value.optionally_index( |
|
torch.load( |
|
vocoder_checkpoint_path, |
|
map_location=torch.device("cpu"), |
|
) |
|
) |
|
) |
|
|
|
if eval: |
|
self.autoregressive.post_init_gpt2_config(self.args.kv_cache) |
|
self.autoregressive.eval() |
|
self.diffusion.eval() |
|
self.clvp.eval() |
|
self.vocoder.eval() |
|
|
|
def train_step(self): |
|
raise NotImplementedError("Tortoise Training is not implemented") |
|
|