File size: 32,897 Bytes
13531f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 |
# type: ignore
"""
Modified from https://github.com/philz1337x/clarity-upscaler
which is a copy of https://github.com/AUTOMATIC1111/stable-diffusion-webui
which is a copy of https://github.com/victorca25/iNNfer
which is a copy of https://github.com/xinntao/ESRGAN
"""
import math
import os
from collections import OrderedDict, namedtuple
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
####################
# RRDBNet Generator
####################
class RRDBNet(nn.Module):
def __init__(
self,
in_nc,
out_nc,
nf,
nb,
nr=3,
gc=32,
upscale=4,
norm_type=None,
act_type="leakyrelu",
mode="CNA",
upsample_mode="upconv",
convtype="Conv2D",
finalact=None,
gaussian_noise=False,
plus=False,
):
super(RRDBNet, self).__init__()
n_upscale = int(math.log(upscale, 2))
if upscale == 3:
n_upscale = 1
self.resrgan_scale = 0
if in_nc % 16 == 0:
self.resrgan_scale = 1
elif in_nc != 4 and in_nc % 4 == 0:
self.resrgan_scale = 2
fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
rb_blocks = [
RRDB(
nf,
nr,
kernel_size=3,
gc=32,
stride=1,
bias=1,
pad_type="zero",
norm_type=norm_type,
act_type=act_type,
mode="CNA",
convtype=convtype,
gaussian_noise=gaussian_noise,
plus=plus,
)
for _ in range(nb)
]
LR_conv = conv_block(
nf,
nf,
kernel_size=3,
norm_type=norm_type,
act_type=None,
mode=mode,
convtype=convtype,
)
if upsample_mode == "upconv":
upsample_block = upconv_block
elif upsample_mode == "pixelshuffle":
upsample_block = pixelshuffle_block
else:
raise NotImplementedError(f"upsample mode [{upsample_mode}] is not found")
if upscale == 3:
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
else:
upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
outact = act(finalact) if finalact else None
self.model = sequential(
fea_conv,
ShortcutBlock(sequential(*rb_blocks, LR_conv)),
*upsampler,
HR_conv0,
HR_conv1,
outact,
)
def forward(self, x, outm=None):
if self.resrgan_scale == 1:
feat = pixel_unshuffle(x, scale=4)
elif self.resrgan_scale == 2:
feat = pixel_unshuffle(x, scale=2)
else:
feat = x
return self.model(feat)
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(
self,
nf,
nr=3,
kernel_size=3,
gc=32,
stride=1,
bias=1,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode="CNA",
convtype="Conv2D",
spectral_norm=False,
gaussian_noise=False,
plus=False,
):
super(RRDB, self).__init__()
# This is for backwards compatibility with existing models
if nr == 3:
self.RDB1 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
convtype,
spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise,
plus=plus,
)
self.RDB2 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
convtype,
spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise,
plus=plus,
)
self.RDB3 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
convtype,
spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise,
plus=plus,
)
else:
RDB_list = [
ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
convtype,
spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise,
plus=plus,
)
for _ in range(nr)
]
self.RDBs = nn.Sequential(*RDB_list)
def forward(self, x):
if hasattr(self, "RDB1"):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
else:
out = self.RDBs(x)
return out * 0.2 + x
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
def __init__(
self,
nf=64,
kernel_size=3,
gc=32,
stride=1,
bias=1,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode="CNA",
convtype="Conv2D",
spectral_norm=False,
gaussian_noise=False,
plus=False,
):
super(ResidualDenseBlock_5C, self).__init__()
self.noise = GaussianNoise() if gaussian_noise else None
self.conv1x1 = conv1x1(nf, gc) if plus else None
self.conv1 = conv_block(
nf,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
self.conv2 = conv_block(
nf + gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
self.conv3 = conv_block(
nf + 2 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
self.conv4 = conv_block(
nf + 3 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
if mode == "CNA":
last_act = None
else:
last_act = act_type
self.conv5 = conv_block(
nf + 4 * gc,
nf,
3,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=last_act,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
if self.conv1x1:
x2 = x2 + self.conv1x1(x)
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
if self.conv1x1:
x4 = x4 + x2
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
if self.noise:
return self.noise(x5.mul(0.2) + x)
else:
return x5 * 0.2 + x
####################
# ESRGANplus
####################
class GaussianNoise(nn.Module):
def __init__(self, sigma=0.1, is_relative_detach=False):
super().__init__()
self.sigma = sigma
self.is_relative_detach = is_relative_detach
self.noise = torch.tensor(0, dtype=torch.float)
def forward(self, x):
if self.training and self.sigma != 0:
self.noise = self.noise.to(device=x.device, dtype=x.device)
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
x = x + sampled_noise
return x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
####################
# SRVGGNetCompact
####################
class SRVGGNetCompact(nn.Module):
"""A compact VGG-style network structure for super-resolution.
This class is copied from https://github.com/xinntao/Real-ESRGAN
"""
def __init__(
self,
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=16,
upscale=4,
act_type="prelu",
):
super(SRVGGNetCompact, self).__init__()
self.num_in_ch = num_in_ch
self.num_out_ch = num_out_ch
self.num_feat = num_feat
self.num_conv = num_conv
self.upscale = upscale
self.act_type = act_type
self.body = nn.ModuleList()
# the first conv
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
# the first activation
if act_type == "relu":
activation = nn.ReLU(inplace=True)
elif act_type == "prelu":
activation = nn.PReLU(num_parameters=num_feat)
elif act_type == "leakyrelu":
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation)
# the body structure
for _ in range(num_conv):
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
# activation
if act_type == "relu":
activation = nn.ReLU(inplace=True)
elif act_type == "prelu":
activation = nn.PReLU(num_parameters=num_feat)
elif act_type == "leakyrelu":
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation)
# the last conv
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
# upsample
self.upsampler = nn.PixelShuffle(upscale)
def forward(self, x):
out = x
for i in range(0, len(self.body)):
out = self.body[i](out)
out = self.upsampler(out)
# add the nearest upsampled image, so that the network learns the residual
base = F.interpolate(x, scale_factor=self.upscale, mode="nearest")
out += base
return out
####################
# Upsampler
####################
class Upsample(nn.Module):
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
The input data is assumed to be of the form
`minibatch x channels x [optional depth] x [optional height] x width`.
"""
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
super(Upsample, self).__init__()
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.size = size
self.align_corners = align_corners
def forward(self, x):
return nn.functional.interpolate(
x,
size=self.size,
scale_factor=self.scale_factor,
mode=self.mode,
align_corners=self.align_corners,
)
def extra_repr(self):
if self.scale_factor is not None:
info = f"scale_factor={self.scale_factor}"
else:
info = f"size={self.size}"
info += f", mode={self.mode}"
return info
def pixel_unshuffle(x, scale):
"""Pixel unshuffle.
Args:
x (Tensor): Input feature with shape (b, c, hh, hw).
scale (int): Downsample ratio.
Returns:
Tensor: the pixel unshuffled feature.
"""
b, c, hh, hw = x.size()
out_channel = c * (scale**2)
assert hh % scale == 0 and hw % scale == 0
h = hh // scale
w = hw // scale
x_view = x.view(b, c, h, scale, w, scale)
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
def pixelshuffle_block(
in_nc,
out_nc,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
convtype="Conv2D",
):
"""
Pixel shuffle layer
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
Neural Network, CVPR17)
"""
conv = conv_block(
in_nc,
out_nc * (upscale_factor**2),
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=None,
act_type=None,
convtype=convtype,
)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
n = norm(norm_type, out_nc) if norm_type else None
a = act(act_type) if act_type else None
return sequential(conv, pixel_shuffle, n, a)
def upconv_block(
in_nc,
out_nc,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
mode="nearest",
convtype="Conv2D",
):
"""Upconv layer"""
upscale_factor = (1, upscale_factor, upscale_factor) if convtype == "Conv3D" else upscale_factor
upsample = Upsample(scale_factor=upscale_factor, mode=mode)
conv = conv_block(
in_nc,
out_nc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
convtype=convtype,
)
return sequential(upsample, conv)
####################
# Basic blocks
####################
def make_layer(basic_block, num_basic_block, **kwarg):
"""Make layers by stacking the same blocks.
Args:
basic_block (nn.module): nn.module class for basic block. (block)
num_basic_block (int): number of blocks. (n_layers)
Returns:
nn.Sequential: Stacked blocks in nn.Sequential.
"""
layers = []
for _ in range(num_basic_block):
layers.append(basic_block(**kwarg))
return nn.Sequential(*layers)
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
"""activation helper"""
act_type = act_type.lower()
if act_type == "relu":
layer = nn.ReLU(inplace)
elif act_type in ("leakyrelu", "lrelu"):
layer = nn.LeakyReLU(neg_slope, inplace)
elif act_type == "prelu":
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
elif act_type == "tanh": # [-1, 1] range output
layer = nn.Tanh()
elif act_type == "sigmoid": # [0, 1] range output
layer = nn.Sigmoid()
else:
raise NotImplementedError(f"activation layer [{act_type}] is not found")
return layer
class Identity(nn.Module):
def __init__(self, *kwargs):
super(Identity, self).__init__()
def forward(self, x, *kwargs):
return x
def norm(norm_type, nc):
"""Return a normalization layer"""
norm_type = norm_type.lower()
if norm_type == "batch":
layer = nn.BatchNorm2d(nc, affine=True)
elif norm_type == "instance":
layer = nn.InstanceNorm2d(nc, affine=False)
elif norm_type == "none":
def norm_layer(x):
return Identity()
else:
raise NotImplementedError(f"normalization layer [{norm_type}] is not found")
return layer
def pad(pad_type, padding):
"""padding layer helper"""
pad_type = pad_type.lower()
if padding == 0:
return None
if pad_type == "reflect":
layer = nn.ReflectionPad2d(padding)
elif pad_type == "replicate":
layer = nn.ReplicationPad2d(padding)
elif pad_type == "zero":
layer = nn.ZeroPad2d(padding)
else:
raise NotImplementedError(f"padding layer [{pad_type}] is not implemented")
return layer
def get_valid_padding(kernel_size, dilation):
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
padding = (kernel_size - 1) // 2
return padding
class ShortcutBlock(nn.Module):
"""Elementwise sum the output of a submodule to its input"""
def __init__(self, submodule):
super(ShortcutBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = x + self.sub(x)
return output
def __repr__(self):
return "Identity + \n|" + self.sub.__repr__().replace("\n", "\n|")
def sequential(*args):
"""Flatten Sequential. It unwraps nn.Sequential."""
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError("sequential does not support OrderedDict input.")
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
def conv_block(
in_nc,
out_nc,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
mode="CNA",
convtype="Conv2D",
spectral_norm=False,
):
"""Conv layer with padding, normalization, activation"""
assert mode in ["CNA", "NAC", "CNAC"], f"Wrong conv mode [{mode}]"
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
padding = padding if pad_type == "zero" else 0
if convtype == "PartialConv2D":
# this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer
from torchvision.ops import PartialConv2d
c = PartialConv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
elif convtype == "DeformConv2D":
from torchvision.ops import DeformConv2d # not tested
c = DeformConv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
elif convtype == "Conv3D":
c = nn.Conv3d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
else:
c = nn.Conv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
if spectral_norm:
c = nn.utils.spectral_norm(c)
a = act(act_type) if act_type else None
if "CNA" in mode:
n = norm(norm_type, out_nc) if norm_type else None
return sequential(p, c, n, a)
elif mode == "NAC":
if norm_type is None and act_type is not None:
a = act(act_type, inplace=False)
n = norm(norm_type, in_nc) if norm_type else None
return sequential(n, a, p, c)
def load_models(
model_path: Path,
command_path: str = None,
) -> list:
"""
A one-and done loader to try finding the desired models in specified directories.
@param download_name: Specify to download from model_url immediately.
@param model_url: If no other models are found, this will be downloaded on upscale.
@param model_path: The location to store/find models in.
@param command_path: A command-line argument to search for models in first.
@param ext_filter: An optional list of filename extensions to filter by
@return: A list of paths containing the desired model(s)
"""
output = []
try:
places = []
if command_path is not None and command_path != model_path:
pretrained_path = os.path.join(command_path, "experiments/pretrained_models")
if os.path.exists(pretrained_path):
print(f"Appending path: {pretrained_path}")
places.append(pretrained_path)
elif os.path.exists(command_path):
places.append(command_path)
places.append(model_path)
except Exception:
pass
return output
def mod2normal(state_dict):
# this code is copied from https://github.com/victorca25/iNNfer
if "conv_first.weight" in state_dict:
crt_net = {}
items = list(state_dict)
crt_net["model.0.weight"] = state_dict["conv_first.weight"]
crt_net["model.0.bias"] = state_dict["conv_first.bias"]
for k in items.copy():
if "RDB" in k:
ori_k = k.replace("RRDB_trunk.", "model.1.sub.")
if ".weight" in k:
ori_k = ori_k.replace(".weight", ".0.weight")
elif ".bias" in k:
ori_k = ori_k.replace(".bias", ".0.bias")
crt_net[ori_k] = state_dict[k]
items.remove(k)
crt_net["model.1.sub.23.weight"] = state_dict["trunk_conv.weight"]
crt_net["model.1.sub.23.bias"] = state_dict["trunk_conv.bias"]
crt_net["model.3.weight"] = state_dict["upconv1.weight"]
crt_net["model.3.bias"] = state_dict["upconv1.bias"]
crt_net["model.6.weight"] = state_dict["upconv2.weight"]
crt_net["model.6.bias"] = state_dict["upconv2.bias"]
crt_net["model.8.weight"] = state_dict["HRconv.weight"]
crt_net["model.8.bias"] = state_dict["HRconv.bias"]
crt_net["model.10.weight"] = state_dict["conv_last.weight"]
crt_net["model.10.bias"] = state_dict["conv_last.bias"]
state_dict = crt_net
return state_dict
def resrgan2normal(state_dict, nb=23):
# this code is copied from https://github.com/victorca25/iNNfer
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
re8x = 0
crt_net = {}
items = list(state_dict)
crt_net["model.0.weight"] = state_dict["conv_first.weight"]
crt_net["model.0.bias"] = state_dict["conv_first.bias"]
for k in items.copy():
if "rdb" in k:
ori_k = k.replace("body.", "model.1.sub.")
ori_k = ori_k.replace(".rdb", ".RDB")
if ".weight" in k:
ori_k = ori_k.replace(".weight", ".0.weight")
elif ".bias" in k:
ori_k = ori_k.replace(".bias", ".0.bias")
crt_net[ori_k] = state_dict[k]
items.remove(k)
crt_net[f"model.1.sub.{nb}.weight"] = state_dict["conv_body.weight"]
crt_net[f"model.1.sub.{nb}.bias"] = state_dict["conv_body.bias"]
crt_net["model.3.weight"] = state_dict["conv_up1.weight"]
crt_net["model.3.bias"] = state_dict["conv_up1.bias"]
crt_net["model.6.weight"] = state_dict["conv_up2.weight"]
crt_net["model.6.bias"] = state_dict["conv_up2.bias"]
if "conv_up3.weight" in state_dict:
# modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
re8x = 3
crt_net["model.9.weight"] = state_dict["conv_up3.weight"]
crt_net["model.9.bias"] = state_dict["conv_up3.bias"]
crt_net[f"model.{8+re8x}.weight"] = state_dict["conv_hr.weight"]
crt_net[f"model.{8+re8x}.bias"] = state_dict["conv_hr.bias"]
crt_net[f"model.{10+re8x}.weight"] = state_dict["conv_last.weight"]
crt_net[f"model.{10+re8x}.bias"] = state_dict["conv_last.bias"]
state_dict = crt_net
return state_dict
def infer_params(state_dict):
# this code is copied from https://github.com/victorca25/iNNfer
scale2x = 0
scalemin = 6
n_uplayer = 0
plus = False
for block in list(state_dict):
parts = block.split(".")
n_parts = len(parts)
if n_parts == 5 and parts[2] == "sub":
nb = int(parts[3])
elif n_parts == 3:
part_num = int(parts[1])
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
scale2x += 1
if part_num > n_uplayer:
n_uplayer = part_num
out_nc = state_dict[block].shape[0]
if not plus and "conv1x1" in block:
plus = True
nf = state_dict["model.0.weight"].shape[0]
in_nc = state_dict["model.0.weight"].shape[1]
out_nc = out_nc
scale = 2**scale2x
return in_nc, out_nc, nf, nb, plus, scale
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
def split_grid(image, tile_w=512, tile_h=512, overlap=64):
w = image.width
h = image.height
non_overlap_width = tile_w - overlap
non_overlap_height = tile_h - overlap
cols = math.ceil((w - overlap) / non_overlap_width)
rows = math.ceil((h - overlap) / non_overlap_height)
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
grid = Grid([], tile_w, tile_h, w, h, overlap)
for row in range(rows):
row_images = []
y = int(row * dy)
if y + tile_h >= h:
y = h - tile_h
for col in range(cols):
x = int(col * dx)
if x + tile_w >= w:
x = w - tile_w
tile = image.crop((x, y, x + tile_w, y + tile_h))
row_images.append([x, tile_w, tile])
grid.tiles.append([y, tile_h, row_images])
return grid
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
def combine_grid(grid):
def make_mask_image(r):
r = r * 255 / grid.overlap
r = r.astype(np.uint8)
return Image.fromarray(r, "L")
mask_w = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
)
mask_h = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
)
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
for y, h, row in grid.tiles:
combined_row = Image.new("RGB", (grid.image_w, h))
for x, w, tile in row:
if x == 0:
combined_row.paste(tile, (0, 0))
continue
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
if y == 0:
combined_image.paste(combined_row, (0, 0))
continue
combined_image.paste(
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
(0, y),
mask=mask_h,
)
combined_image.paste(
combined_row.crop((0, grid.overlap, combined_row.width, h)),
(0, y + grid.overlap),
)
return combined_image
class UpscalerESRGAN:
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
self.device = device
self.dtype = dtype
self.model_path = model_path
self.model = self.load_model(model_path)
def __call__(self, img: Image.Image) -> Image.Image:
return self.upscale_without_tiling(img)
def to(self, device: torch.device, dtype: torch.dtype):
self.device = device
self.dtype = dtype
self.model.to(device=device, dtype=dtype)
def load_model(self, path: Path) -> SRVGGNetCompact | RRDBNet:
filename = path
state_dict = torch.load(filename, weights_only=True, map_location=self.device)
if "params_ema" in state_dict:
state_dict = state_dict["params_ema"]
elif "params" in state_dict:
state_dict = state_dict["params"]
num_conv = 16 if "realesr-animevideov3" in filename else 32
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=num_conv,
upscale=4,
act_type="prelu",
)
model.load_state_dict(state_dict)
model.eval()
return model
if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
state_dict = resrgan2normal(state_dict, nb)
elif "conv_first.weight" in state_dict:
state_dict = mod2normal(state_dict)
elif "model.0.weight" not in state_dict:
raise Exception("The file is not a recognized ESRGAN model.")
in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
model.load_state_dict(state_dict)
model.eval()
return model
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
img = np.array(img)
img = img[:, :, ::-1]
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device=self.device, dtype=self.dtype)
with torch.no_grad():
output = self.model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255.0 * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
return Image.fromarray(output, "RGB")
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
grid = split_grid(img)
newtiles = []
scale_factor = 1
for y, h, row in grid.tiles:
newrow = []
for tiledata in row:
x, w, tile = tiledata
output = self.upscale_without_tiling(tile)
scale_factor = output.width // tile.width
newrow.append([x * scale_factor, w * scale_factor, output])
newtiles.append([y * scale_factor, h * scale_factor, newrow])
newgrid = Grid(
newtiles,
grid.tile_w * scale_factor,
grid.tile_h * scale_factor,
grid.image_w * scale_factor,
grid.image_h * scale_factor,
grid.overlap * scale_factor,
)
output = combine_grid(newgrid)
return output
|