Translate_It / app.py
Jesuscarr's picture
Update app.py
c7717e6
raw
history blame
2.6 kB
import gradio as gr
from transformers import MarianMTModel, MarianTokenizer, pipeline
def translate(text, target_language):
language_codes = {
"Spanish": "es",
"French (European)": "fr",
"French (Canadian)": "fr",
"Italian": "it",
"Ukrainian": "uk",
"Portuguese (Brazilian)": "pt_BR",
"Portuguese (European)": "pt",
"Russian": "ru",
"Chinese": "zh",
"Dutch": "nl",
"German": "de",
"Arabic": "ar",
"Hebrew": "he",
"Greek": "el"
}
target_language_code = language_codes[target_language]
model_name = f'helsinki-nlp/opus-mt-en-{target_language_code}'
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs)
translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
return translation
def classify_text(text, labels):
classifier = pipeline("zero-shot-classification")
result = classifier(text, labels.split(','))
scores = result["scores"]
predictions = result["labels"]
sorted_predictions = [pred for _, pred in sorted(zip(scores, predictions), reverse=True)]
return sorted_predictions
def generate_text(prompt, max_length):
text_gen = pipeline("text-generation", model="gpt2")
generated_text = text_gen(prompt, max_length=max_length, do_sample=True)[0]["generated_text"]
return generated_text
language_options = [
"Spanish", "French (European)", "French (Canadian)", "Italian", "Ukrainian",
"Portuguese (Brazilian)", "Portuguese (European)", "Russian", "Chinese",
"Dutch", "German", "Arabic", "Hebrew", "Greek"
]
iface = gr.Interface(
[translate, classify_text, generate_text],
inputs=[
[
gr.inputs.Textbox(lines=5, label="Enter text to translate:"),
gr.inputs.Dropdown(choices=language_options, label="Target Language"),
],
[
gr.inputs.Textbox(lines=5, label="Enter text to classify:"),
gr.inputs.Textbox(lines=2, label="Enter comma-separated labels:"),
],
[
gr.inputs.Textbox(lines=5, label="Enter a prompt for text generation:"),
gr.inputs.Slider(minimum=10, maximum=150, step=1, default=50, label="Max Length"),
],
],
outputs=[
gr.outputs.Textbox(label="Translated Text"),
gr.outputs.Textbox(label="Classification"),
gr.outputs.Textbox(label="Generated Text"),
],
)
iface.launch()