Spaces:
Running
Running
File size: 2,941 Bytes
7cac62c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import HuggingFaceHub
from langchain.embeddings import HuggingFaceHubEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
def loading_pdf(): return 'Loading...'
def pdf_changes(pdf_doc, repo_id):
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=2096, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceHubEmbeddings()
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={'temperature': 0.5, 'max_new_tokens': 2096})
global qa
qa = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=retriever, return_source_documents=True)
return "Ready"
def add_text(history, text):
history = history + [(text, None)]
return history, ''
def bot(history):
response = infer(history[-1][0])
history[-1][1] = response['result']
return history
def infer(question):
query = question
result = qa({'query': query})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<h1>Chat with PDF</h1>
"""
with gr.Blocks(css=css, theme='Taithrah/Minimal') as demo:
with gr.Column(elem_id='col-container'):
gr.HTML(title)
with gr.Column():
pdf_doc = gr.File(label='Upload a PDF', file_types=['.pdf'])
repo_id = gr.Dropdown(label='LLM',
choices=[
'mistralai/Mistral-7B-Instruct-v0.1',
'HuggingFaceH4/zephyr-7b-beta',
'meta-llama/Llama-2-7b-chat-hf',
'01-ai/Yi-6B-200K'
'cognitivecomputations/dolphin-2.5-mixtral-8x7b'
],
value='mistralai/Mistral-7B-Instruct-v0.1')
with gr.Row():
langchain_status = gr.Textbox(label='Status', placeholder='', interactive=False)
load_pdf = gr.Button('Load PDF to LangChain')
chatbot = gr.Chatbot([], elem_id='chatbot')#.style(height=350)
question = gr.Textbox(label='Question', placeholder='Type your query')
submit_btn = gr.Button('Send')
repo_id.change(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot)
demo.launch() |