|
|
|
"""Initialize modules for espnet2 neural networks.""" |
|
import torch |
|
from typeguard import check_argument_types |
|
|
|
|
|
def initialize(model: torch.nn.Module, init: str): |
|
"""Initialize weights of a neural network module. |
|
|
|
Parameters are initialized using the given method or distribution. |
|
|
|
Custom initialization routines can be implemented into submodules |
|
as function `espnet_initialization_fn` within the custom module. |
|
|
|
Args: |
|
model: Target. |
|
init: Method of initialization. |
|
""" |
|
assert check_argument_types() |
|
print("init with", init) |
|
|
|
|
|
for p in model.parameters(): |
|
if p.dim() > 1: |
|
if init == "xavier_uniform": |
|
torch.nn.init.xavier_uniform_(p.data) |
|
elif init == "xavier_normal": |
|
torch.nn.init.xavier_normal_(p.data) |
|
elif init == "kaiming_uniform": |
|
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu") |
|
elif init == "kaiming_normal": |
|
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu") |
|
else: |
|
raise ValueError("Unknown initialization: " + init) |
|
|
|
for name, p in model.named_parameters(): |
|
if ".bias" in name and p.dim() == 1: |
|
p.data.zero_() |
|
|