|
|
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
from AR.modules.embedding_onnx import SinePositionalEmbedding |
|
from AR.modules.embedding_onnx import TokenEmbedding |
|
from AR.modules.transformer_onnx import LayerNorm |
|
from AR.modules.transformer_onnx import TransformerEncoder |
|
from AR.modules.transformer_onnx import TransformerEncoderLayer |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torchmetrics.classification import MulticlassAccuracy |
|
|
|
default_config = { |
|
"embedding_dim": 512, |
|
"hidden_dim": 512, |
|
"num_head": 8, |
|
"num_layers": 12, |
|
"num_codebook": 8, |
|
"p_dropout": 0.0, |
|
"vocab_size": 1024 + 1, |
|
"phoneme_vocab_size": 512, |
|
"EOS": 1024, |
|
} |
|
|
|
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float() |
|
|
|
def logits_to_probs( |
|
logits, |
|
previous_tokens = None, |
|
temperature: float = 1.0, |
|
top_k = None, |
|
top_p = None, |
|
repetition_penalty: float = 1.0, |
|
): |
|
previous_tokens = previous_tokens.squeeze() |
|
if previous_tokens is not None and repetition_penalty != 1.0: |
|
previous_tokens = previous_tokens.long() |
|
score = torch.gather(logits, dim=0, index=previous_tokens) |
|
score = torch.where( |
|
score < 0, score * repetition_penalty, score / repetition_penalty |
|
) |
|
logits.scatter_(dim=0, index=previous_tokens, src=score) |
|
|
|
if top_p is not None and top_p < 1.0: |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cum_probs = torch.cumsum( |
|
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1 |
|
) |
|
sorted_indices_to_remove = cum_probs > top_p |
|
sorted_indices_to_remove[0] = False |
|
indices_to_remove = sorted_indices_to_remove.scatter( |
|
dim=0, index=sorted_indices, src=sorted_indices_to_remove |
|
) |
|
logits = logits.masked_fill(indices_to_remove, -float("Inf")) |
|
|
|
logits = logits / max(temperature, 1e-5) |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, top_k) |
|
pivot = v.select(-1, -1).unsqueeze(-1) |
|
logits = torch.where(logits < pivot, inf_tensor_value, logits) |
|
|
|
probs = torch.nn.functional.softmax(logits, dim=-1) |
|
return probs |
|
|
|
|
|
def multinomial_sample_one_no_sync( |
|
probs_sort |
|
): |
|
q = torch.randn_like(probs_sort) |
|
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) |
|
|
|
|
|
def sample( |
|
logits, |
|
previous_tokens, |
|
**sampling_kwargs, |
|
): |
|
probs = logits_to_probs( |
|
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs |
|
) |
|
idx_next = multinomial_sample_one_no_sync(probs) |
|
return idx_next, probs |
|
|
|
|
|
class OnnxEncoder(nn.Module): |
|
def __init__(self, ar_text_embedding, bert_proj, ar_text_position): |
|
super().__init__() |
|
self.ar_text_embedding = ar_text_embedding |
|
self.bert_proj = bert_proj |
|
self.ar_text_position = ar_text_position |
|
|
|
def forward(self, x, bert_feature): |
|
x = self.ar_text_embedding(x) |
|
x = x + self.bert_proj(bert_feature.transpose(1, 2)) |
|
return self.ar_text_position(x) |
|
|
|
|
|
class T2SFirstStageDecoder(nn.Module): |
|
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric, |
|
top_k, early_stop_num, num_layers): |
|
super().__init__() |
|
self.ar_audio_embedding = ar_audio_embedding |
|
self.ar_audio_position = ar_audio_position |
|
self.h = h |
|
self.ar_predict_layer = ar_predict_layer |
|
self.loss_fct = loss_fct |
|
self.ar_accuracy_metric = ar_accuracy_metric |
|
self.top_k = top_k |
|
self.early_stop_num = early_stop_num |
|
self.num_layers = num_layers |
|
|
|
def forward(self, x, prompt): |
|
y = prompt |
|
x_example = x[:,:,0] * 0.0 |
|
|
|
cache = { |
|
"all_stage": self.num_layers, |
|
"k": None, |
|
"v": None, |
|
"y_emb": None, |
|
"first_infer": 1, |
|
"stage": 0, |
|
} |
|
|
|
y_emb = self.ar_audio_embedding(y) |
|
|
|
cache["y_emb"] = y_emb |
|
y_pos = self.ar_audio_position(y_emb) |
|
|
|
xy_pos = torch.concat([x, y_pos], dim=1) |
|
|
|
y_example = y_pos[:,:,0] * 0.0 |
|
x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool() |
|
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64) |
|
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum( |
|
torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0 |
|
) |
|
y_attn_mask = y_attn_mask > 0 |
|
|
|
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool() |
|
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool() |
|
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1) |
|
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1) |
|
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0) |
|
cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\ |
|
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1) |
|
cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\ |
|
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1) |
|
|
|
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) |
|
logits = self.ar_predict_layer(xy_dec[:, -1]) |
|
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) |
|
|
|
y = torch.concat([y, samples], dim=1) |
|
|
|
return y, cache["k"], cache["v"], cache["y_emb"], x_example |
|
|
|
|
|
class T2SStageDecoder(nn.Module): |
|
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric, |
|
top_k, early_stop_num, num_layers): |
|
super().__init__() |
|
self.ar_audio_embedding = ar_audio_embedding |
|
self.ar_audio_position = ar_audio_position |
|
self.h = h |
|
self.ar_predict_layer = ar_predict_layer |
|
self.loss_fct = loss_fct |
|
self.ar_accuracy_metric = ar_accuracy_metric |
|
self.top_k = top_k |
|
self.early_stop_num = early_stop_num |
|
self.num_layers = num_layers |
|
|
|
def forward(self, y, k, v, y_emb, x_example): |
|
cache = { |
|
"all_stage": self.num_layers, |
|
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)), |
|
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)), |
|
"y_emb": y_emb, |
|
"first_infer": 0, |
|
"stage": 0, |
|
} |
|
|
|
y_emb = torch.cat( |
|
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1 |
|
) |
|
cache["y_emb"] = y_emb |
|
y_pos = self.ar_audio_position(y_emb) |
|
|
|
xy_pos = y_pos[:, -1:] |
|
|
|
y_example = y_pos[:,:,0] * 0.0 |
|
|
|
xy_attn_mask = torch.cat([x_example, y_example], dim=1) |
|
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool) |
|
|
|
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) |
|
logits = self.ar_predict_layer(xy_dec[:, -1]) |
|
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) |
|
|
|
y = torch.concat([y, samples], dim=1) |
|
|
|
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples |
|
|
|
|
|
class Text2SemanticDecoder(nn.Module): |
|
def __init__(self, config, norm_first=False, top_k=3): |
|
super(Text2SemanticDecoder, self).__init__() |
|
self.model_dim = config["model"]["hidden_dim"] |
|
self.embedding_dim = config["model"]["embedding_dim"] |
|
self.num_head = config["model"]["head"] |
|
self.num_layers = config["model"]["n_layer"] |
|
self.norm_first = norm_first |
|
self.vocab_size = config["model"]["vocab_size"] |
|
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"] |
|
self.p_dropout = float(config["model"]["dropout"]) |
|
self.EOS = config["model"]["EOS"] |
|
self.norm_first = norm_first |
|
assert self.EOS == self.vocab_size - 1 |
|
self.bert_proj = nn.Linear(1024, self.embedding_dim) |
|
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout) |
|
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True) |
|
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout) |
|
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True) |
|
self.h = TransformerEncoder( |
|
TransformerEncoderLayer( |
|
d_model=self.model_dim, |
|
nhead=self.num_head, |
|
dim_feedforward=self.model_dim * 4, |
|
dropout=0.1, |
|
batch_first=True, |
|
norm_first=norm_first, |
|
), |
|
num_layers=self.num_layers, |
|
norm=LayerNorm(self.model_dim) if norm_first else None, |
|
) |
|
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False) |
|
self.loss_fct = nn.CrossEntropyLoss(reduction="sum") |
|
self.ar_accuracy_metric = MulticlassAccuracy( |
|
self.vocab_size, |
|
top_k=top_k, |
|
average="micro", |
|
multidim_average="global", |
|
ignore_index=self.EOS, |
|
) |
|
self.top_k = torch.LongTensor([1]) |
|
self.early_stop_num = torch.LongTensor([-1]) |
|
|
|
def init_onnx(self): |
|
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position) |
|
self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, |
|
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num, |
|
self.num_layers) |
|
self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, |
|
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num, |
|
self.num_layers) |
|
|
|
def forward(self, x, prompts, bert_feature): |
|
early_stop_num = self.early_stop_num |
|
prefix_len = prompts.shape[1] |
|
|
|
x = self.onnx_encoder(x, bert_feature) |
|
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts) |
|
|
|
stop = False |
|
for idx in range(1, 1500): |
|
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example) |
|
y, k, v, y_emb, stage, logits, samples = enco |
|
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: |
|
stop = True |
|
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: |
|
stop = True |
|
if stop: |
|
break |
|
y[0, -1] = 0 |
|
return y, idx |
|
|
|
def infer(self, x, prompts, bert_feature): |
|
top_k = self.top_k |
|
early_stop_num = self.early_stop_num |
|
|
|
x = self.onnx_encoder(x, bert_feature) |
|
|
|
y = prompts |
|
prefix_len = y.shape[1] |
|
x_len = x.shape[1] |
|
x_example = x[:,:,0] * 0.0 |
|
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example) |
|
x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool) |
|
|
|
stop = False |
|
cache = { |
|
"all_stage": self.num_layers, |
|
"k": [None] * self.num_layers, |
|
"v": [None] * self.num_layers, |
|
"y_emb": None, |
|
"first_infer": 1, |
|
"stage": 0, |
|
} |
|
for idx in range(1500): |
|
if cache["first_infer"] == 1: |
|
y_emb = self.ar_audio_embedding(y) |
|
else: |
|
y_emb = torch.cat( |
|
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1 |
|
) |
|
cache["y_emb"] = y_emb |
|
y_pos = self.ar_audio_position(y_emb) |
|
if cache["first_infer"] == 1: |
|
xy_pos = torch.concat([x, y_pos], dim=1) |
|
else: |
|
xy_pos = y_pos[:, -1:] |
|
y_len = y_pos.shape[1] |
|
if cache["first_infer"] == 1: |
|
x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True) |
|
y_attn_mask = F.pad( |
|
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), |
|
(x_len, 0), value=False |
|
) |
|
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0) |
|
else: |
|
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool) |
|
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) |
|
logits = self.ar_predict_layer(xy_dec[:, -1]) |
|
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) |
|
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: |
|
stop = True |
|
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: |
|
stop = True |
|
if stop: |
|
if prompts.shape[1] == y.shape[1]: |
|
y = torch.concat([y, torch.zeros_like(samples)], dim=1) |
|
break |
|
y = torch.concat([y, samples], dim=1) |
|
cache["first_infer"] = 0 |
|
return y, idx |