|
from torch.nn.functional import *
|
|
from torch.nn.functional import (
|
|
_mha_shape_check,
|
|
_canonical_mask,
|
|
_none_or_dtype,
|
|
_in_projection_packed,
|
|
)
|
|
|
|
def multi_head_attention_forward_patched(
|
|
query,
|
|
key,
|
|
value,
|
|
embed_dim_to_check: int,
|
|
num_heads: int,
|
|
in_proj_weight,
|
|
in_proj_bias: Optional[Tensor],
|
|
bias_k: Optional[Tensor],
|
|
bias_v: Optional[Tensor],
|
|
add_zero_attn: bool,
|
|
dropout_p: float,
|
|
out_proj_weight: Tensor,
|
|
out_proj_bias: Optional[Tensor],
|
|
training: bool = True,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
need_weights: bool = True,
|
|
attn_mask: Optional[Tensor] = None,
|
|
use_separate_proj_weight: bool = False,
|
|
q_proj_weight: Optional[Tensor] = None,
|
|
k_proj_weight: Optional[Tensor] = None,
|
|
v_proj_weight: Optional[Tensor] = None,
|
|
static_k: Optional[Tensor] = None,
|
|
static_v: Optional[Tensor] = None,
|
|
average_attn_weights: bool = True,
|
|
is_causal: bool = False,
|
|
cache=None,
|
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
|
|
|
|
_, _, embed_dim = query.shape
|
|
attn_mask = _canonical_mask(
|
|
mask=attn_mask,
|
|
mask_name="attn_mask",
|
|
other_type=None,
|
|
other_name="",
|
|
target_type=query.dtype,
|
|
check_other=False,
|
|
)
|
|
head_dim = embed_dim // num_heads
|
|
|
|
proj_qkv = linear(query, in_proj_weight, in_proj_bias)
|
|
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
|
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
|
|
|
|
if cache["first_infer"] == 1:
|
|
cache["k"][cache["stage"]] = k
|
|
cache["v"][cache["stage"]] = v
|
|
else:
|
|
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
|
|
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
|
|
k = cache["k"][cache["stage"]]
|
|
v = cache["v"][cache["stage"]]
|
|
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
|
|
|
attn_mask = _canonical_mask(
|
|
mask=attn_mask,
|
|
mask_name="attn_mask",
|
|
other_type=None,
|
|
other_name="",
|
|
target_type=q.dtype,
|
|
check_other=False,
|
|
)
|
|
attn_mask = attn_mask.unsqueeze(0)
|
|
|
|
q = q.view(-1, num_heads, head_dim).transpose(0, 1)
|
|
k = k.view(-1, num_heads, head_dim).transpose(0, 1)
|
|
v = v.view(-1, num_heads, head_dim).transpose(0, 1)
|
|
|
|
dropout_p = 0.0
|
|
attn_mask = attn_mask.unsqueeze(0)
|
|
q = q.view(num_heads, -1, head_dim).unsqueeze(0)
|
|
k = k.view(num_heads, -1, head_dim).unsqueeze(0)
|
|
v = v.view(num_heads, -1, head_dim).unsqueeze(0)
|
|
attn_output = scaled_dot_product_attention(
|
|
q, k, v, attn_mask, dropout_p, is_causal
|
|
)
|
|
attn_output = (
|
|
attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
|
|
)
|
|
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
|
attn_output = attn_output.view(-1, 1, attn_output.size(1))
|
|
|
|
return attn_output
|
|
|