import time | |
import librosa | |
import torch | |
import torch.nn.functional as F | |
import soundfile as sf | |
#import logging | |
#logging.getLogger("numba").setLevel(logging.WARNING) | |
from transformers import ( | |
Wav2Vec2FeatureExtractor, | |
HubertModel, | |
) | |
import utils | |
import torch.nn as nn | |
cnhubert_base_path = None | |
class CNHubert(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.model = HubertModel.from_pretrained(cnhubert_base_path) | |
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
cnhubert_base_path | |
) | |
def forward(self, x): | |
input_values = self.feature_extractor( | |
x, return_tensors="pt", sampling_rate=16000 | |
).input_values.to(x.device) | |
feats = self.model(input_values)["last_hidden_state"] | |
return feats | |
# class CNHubertLarge(nn.Module): | |
# def __init__(self): | |
# super().__init__() | |
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large") | |
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large") | |
# def forward(self, x): | |
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device) | |
# feats = self.model(input_values)["last_hidden_state"] | |
# return feats | |
# | |
# class CVec(nn.Module): | |
# def __init__(self): | |
# super().__init__() | |
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base") | |
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base") | |
# def forward(self, x): | |
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device) | |
# feats = self.model(input_values)["last_hidden_state"] | |
# return feats | |
# | |
# class cnw2v2base(nn.Module): | |
# def __init__(self): | |
# super().__init__() | |
# self.model = Wav2Vec2Model.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base") | |
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base") | |
# def forward(self, x): | |
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device) | |
# feats = self.model(input_values)["last_hidden_state"] | |
# return feats | |
def get_model(): | |
model = CNHubert() | |
model.eval() | |
return model | |
# def get_large_model(): | |
# model = CNHubertLarge() | |
# model.eval() | |
# return model | |
# | |
# def get_model_cvec(): | |
# model = CVec() | |
# model.eval() | |
# return model | |
# | |
# def get_model_cnw2v2base(): | |
# model = cnw2v2base() | |
# model.eval() | |
# return model | |
def get_content(hmodel, wav_16k_tensor): | |
with torch.no_grad(): | |
feats = hmodel(wav_16k_tensor) | |
return feats.transpose(1, 2) | |
if __name__ == "__main__": | |
model = get_model() | |
src_path = "/Users/Shared/ει³ι’2.wav" | |
wav_16k_tensor = utils.load_wav_to_torch_and_resample(src_path, 16000) | |
model = model | |
wav_16k_tensor = wav_16k_tensor | |
feats = get_content(model, wav_16k_tensor) | |
print(feats.shape) | |