|
|
|
|
|
import sys,os
|
|
inp_text= os.environ.get("inp_text")
|
|
inp_wav_dir= os.environ.get("inp_wav_dir")
|
|
exp_name= os.environ.get("exp_name")
|
|
i_part= os.environ.get("i_part")
|
|
all_parts= os.environ.get("all_parts")
|
|
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
|
from feature_extractor import cnhubert
|
|
opt_dir= os.environ.get("opt_dir")
|
|
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
|
|
is_half=eval(os.environ.get("is_half","True"))
|
|
|
|
import pdb,traceback,numpy as np,logging
|
|
from scipy.io import wavfile
|
|
import librosa,torch
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
from my_utils import load_audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from time import time as ttime
|
|
import shutil
|
|
def my_save(fea,path):
|
|
dir=os.path.dirname(path)
|
|
name=os.path.basename(path)
|
|
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
|
torch.save(fea,tmp_path)
|
|
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
|
|
|
hubert_dir="%s/4-cnhubert"%(opt_dir)
|
|
wav32dir="%s/5-wav32k"%(opt_dir)
|
|
os.makedirs(opt_dir,exist_ok=True)
|
|
os.makedirs(hubert_dir,exist_ok=True)
|
|
os.makedirs(wav32dir,exist_ok=True)
|
|
|
|
maxx=0.95
|
|
alpha=0.5
|
|
if torch.cuda.is_available():
|
|
device = "cuda:0"
|
|
elif torch.backends.mps.is_available():
|
|
device = "mps"
|
|
else:
|
|
device = "cpu"
|
|
model=cnhubert.get_model()
|
|
|
|
if(is_half==True):
|
|
model=model.half().to(device)
|
|
else:
|
|
model = model.to(device)
|
|
|
|
nan_fails=[]
|
|
def name2go(wav_name,wav_path):
|
|
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
|
|
if(os.path.exists(hubert_path)):return
|
|
tmp_audio = load_audio(wav_path, 32000)
|
|
tmp_max = np.abs(tmp_audio).max()
|
|
if tmp_max > 2.2:
|
|
print("%s-filtered,%s" % (wav_name, tmp_max))
|
|
return
|
|
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
|
|
tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha*1145.14)) + ((1 - alpha)*1145.14) * tmp_audio
|
|
tmp_audio = librosa.resample(
|
|
tmp_audio32b, orig_sr=32000, target_sr=16000
|
|
)
|
|
tensor_wav16 = torch.from_numpy(tmp_audio)
|
|
if (is_half == True):
|
|
tensor_wav16=tensor_wav16.half().to(device)
|
|
else:
|
|
tensor_wav16 = tensor_wav16.to(device)
|
|
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()
|
|
if np.isnan(ssl.detach().numpy()).sum()!= 0:
|
|
nan_fails.append(wav_name)
|
|
print("nan filtered:%s"%wav_name)
|
|
return
|
|
wavfile.write(
|
|
"%s/%s"%(wav32dir,wav_name),
|
|
32000,
|
|
tmp_audio32.astype("int16"),
|
|
)
|
|
my_save(ssl,hubert_path )
|
|
|
|
with open(inp_text,"r",encoding="utf8")as f:
|
|
lines=f.read().strip("\n").split("\n")
|
|
|
|
for line in lines[int(i_part)::int(all_parts)]:
|
|
try:
|
|
|
|
wav_name, spk_name, language, text = line.split("|")
|
|
if (inp_wav_dir !=None):
|
|
wav_name = os.path.basename(wav_name)
|
|
wav_path = "%s/%s"%(inp_wav_dir, wav_name)
|
|
|
|
else:
|
|
wav_path=wav_name
|
|
wav_name = os.path.basename(wav_name)
|
|
name2go(wav_name,wav_path)
|
|
except:
|
|
print(line,traceback.format_exc())
|
|
|
|
if(len(nan_fails)>0 and is_half==True):
|
|
is_half=False
|
|
model=model.float()
|
|
for wav_name in nan_fails:
|
|
try:
|
|
name2go(wav_name)
|
|
except:
|
|
print(wav_name,traceback.format_exc())
|
|
|