import pickle import os import re import wordsegment from g2p_en import G2p from string import punctuation from text import symbols import unicodedata from builtins import str as unicode from g2p_en.expand import normalize_numbers from nltk.tokenize import TweetTokenizer word_tokenize = TweetTokenizer().tokenize from nltk import pos_tag current_file_path = os.path.dirname(__file__) CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep") CMU_DICT_FAST_PATH = os.path.join(current_file_path, "cmudict-fast.rep") CMU_DICT_HOT_PATH = os.path.join(current_file_path, "engdict-hot.rep") CACHE_PATH = os.path.join(current_file_path, "engdict_cache.pickle") NAMECACHE_PATH = os.path.join(current_file_path, "namedict_cache.pickle") arpa = { "AH0", "S", "AH1", "EY2", "AE2", "EH0", "OW2", "UH0", "NG", "B", "G", "AY0", "M", "AA0", "F", "AO0", "ER2", "UH1", "IY1", "AH2", "DH", "IY0", "EY1", "IH0", "K", "N", "W", "IY2", "T", "AA1", "ER1", "EH2", "OY0", "UH2", "UW1", "Z", "AW2", "AW1", "V", "UW2", "AA2", "ER", "AW0", "UW0", "R", "OW1", "EH1", "ZH", "AE0", "IH2", "IH", "Y", "JH", "P", "AY1", "EY0", "OY2", "TH", "HH", "D", "ER0", "CH", "AO1", "AE1", "AO2", "OY1", "AY2", "IH1", "OW0", "L", "SH", } def replace_phs(phs): rep_map = {"'": "-"} phs_new = [] for ph in phs: if ph in symbols: phs_new.append(ph) elif ph in rep_map.keys(): phs_new.append(rep_map[ph]) else: print("ph not in symbols: ", ph) return phs_new def read_dict(): g2p_dict = {} start_line = 49 with open(CMU_DICT_PATH) as f: line = f.readline() line_index = 1 while line: if line_index >= start_line: line = line.strip() word_split = line.split(" ") word = word_split[0].lower() syllable_split = word_split[1].split(" - ") g2p_dict[word] = [] for syllable in syllable_split: phone_split = syllable.split(" ") g2p_dict[word].append(phone_split) line_index = line_index + 1 line = f.readline() return g2p_dict def read_dict_new(): g2p_dict = {} with open(CMU_DICT_PATH) as f: line = f.readline() line_index = 1 while line: if line_index >= 57: line = line.strip() word_split = line.split(" ") word = word_split[0].lower() g2p_dict[word] = [word_split[1].split(" ")] line_index = line_index + 1 line = f.readline() with open(CMU_DICT_FAST_PATH) as f: line = f.readline() line_index = 1 while line: if line_index >= 0: line = line.strip() word_split = line.split(" ") word = word_split[0].lower() if word not in g2p_dict: g2p_dict[word] = [word_split[1:]] line_index = line_index + 1 line = f.readline() return g2p_dict def hot_reload_hot(g2p_dict): with open(CMU_DICT_HOT_PATH) as f: line = f.readline() line_index = 1 while line: if line_index >= 0: line = line.strip() word_split = line.split(" ") word = word_split[0].lower() # 自定义发音词直接覆盖字典 g2p_dict[word] = [word_split[1:]] line_index = line_index + 1 line = f.readline() return g2p_dict def cache_dict(g2p_dict, file_path): with open(file_path, "wb") as pickle_file: pickle.dump(g2p_dict, pickle_file) def get_dict(): if os.path.exists(CACHE_PATH): with open(CACHE_PATH, "rb") as pickle_file: g2p_dict = pickle.load(pickle_file) else: g2p_dict = read_dict_new() cache_dict(g2p_dict, CACHE_PATH) g2p_dict = hot_reload_hot(g2p_dict) return g2p_dict def get_namedict(): if os.path.exists(NAMECACHE_PATH): with open(NAMECACHE_PATH, "rb") as pickle_file: name_dict = pickle.load(pickle_file) else: name_dict = {} return name_dict def text_normalize(text): # todo: eng text normalize # 适配中文及 g2p_en 标点 rep_map = { "[;::,;]": ",", '["’]': "'", "。": ".", "!": "!", "?": "?", } for p, r in rep_map.items(): text = re.sub(p, r, text) # 来自 g2p_en 文本格式化处理 # 增加大写兼容 text = unicode(text) text = normalize_numbers(text) text = ''.join(char for char in unicodedata.normalize('NFD', text) if unicodedata.category(char) != 'Mn') # Strip accents text = re.sub("[^ A-Za-z'.,?!\-]", "", text) text = re.sub(r"(?i)i\.e\.", "that is", text) text = re.sub(r"(?i)e\.g\.", "for example", text) return text class en_G2p(G2p): def __init__(self): super().__init__() # 分词初始化 wordsegment.load() # 扩展过时字典, 添加姓名字典 self.cmu = get_dict() self.namedict = get_namedict() # 剔除读音错误的几个缩写 for word in ["AE", "AI", "AR", "IOS", "HUD", "OS"]: del self.cmu[word.lower()] # 修正多音字 self.homograph2features["read"] = (['R', 'IY1', 'D'], ['R', 'EH1', 'D'], 'VBP') self.homograph2features["complex"] = (['K', 'AH0', 'M', 'P', 'L', 'EH1', 'K', 'S'], ['K', 'AA1', 'M', 'P', 'L', 'EH0', 'K', 'S'], 'JJ') def __call__(self, text): # tokenization words = word_tokenize(text) tokens = pos_tag(words) # tuples of (word, tag) # steps prons = [] for o_word, pos in tokens: # 还原 g2p_en 小写操作逻辑 word = o_word.lower() if re.search("[a-z]", word) is None: pron = [word] # 先把单字母推出去 elif len(word) == 1: # 单读 A 发音修正, 这里需要原格式 o_word 判断大写 if o_word == "A": pron = ['EY1'] else: pron = self.cmu[word][0] # g2p_en 原版多音字处理 elif word in self.homograph2features: # Check homograph pron1, pron2, pos1 = self.homograph2features[word] if pos.startswith(pos1): pron = pron1 # pos1比pos长仅出现在read elif len(pos) < len(pos1) and pos == pos1[:len(pos)]: pron = pron1 else: pron = pron2 else: # 递归查找预测 pron = self.qryword(o_word) prons.extend(pron) prons.extend([" "]) return prons[:-1] def qryword(self, o_word): word = o_word.lower() # 查字典, 单字母除外 if len(word) > 1 and word in self.cmu: # lookup CMU dict return self.cmu[word][0] # 单词仅首字母大写时查找姓名字典 if o_word.istitle() and word in self.namedict: return self.namedict[word][0] # oov 长度小于等于 3 直接读字母 if len(word) <= 3: phones = [] for w in word: # 单读 A 发音修正, 此处不存在大写的情况 if w == "a": phones.extend(['EY1']) else: phones.extend(self.cmu[w][0]) return phones # 尝试分离所有格 if re.match(r"^([a-z]+)('s)$", word): phones = self.qryword(word[:-2]) # P T K F TH HH 无声辅音结尾 's 发 ['S'] if phones[-1] in ['P', 'T', 'K', 'F', 'TH', 'HH']: phones.extend(['S']) # S Z SH ZH CH JH 擦声结尾 's 发 ['IH1', 'Z'] 或 ['AH0', 'Z'] elif phones[-1] in ['S', 'Z', 'SH', 'ZH', 'CH', 'JH']: phones.extend(['AH0', 'Z']) # B D G DH V M N NG L R W Y 有声辅音结尾 's 发 ['Z'] # AH0 AH1 AH2 EY0 EY1 EY2 AE0 AE1 AE2 EH0 EH1 EH2 OW0 OW1 OW2 UH0 UH1 UH2 IY0 IY1 IY2 AA0 AA1 AA2 AO0 AO1 AO2 # ER ER0 ER1 ER2 UW0 UW1 UW2 AY0 AY1 AY2 AW0 AW1 AW2 OY0 OY1 OY2 IH IH0 IH1 IH2 元音结尾 's 发 ['Z'] else: phones.extend(['Z']) return phones # 尝试进行分词,应对复合词 comps = wordsegment.segment(word.lower()) # 无法分词的送回去预测 if len(comps)==1: return self.predict(word) # 可以分词的递归处理 return [phone for comp in comps for phone in self.qryword(comp)] _g2p = en_G2p() def g2p(text): # g2p_en 整段推理,剔除不存在的arpa返回 phone_list = _g2p(text) phones = [ph if ph != "" else "UNK" for ph in phone_list if ph not in [" ", "", "UW", "", ""]] return replace_phs(phones) if __name__ == "__main__": print(g2p("hello")) print(g2p(text_normalize("e.g. I used openai's AI tool to draw a picture."))) print(g2p(text_normalize("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")))