import gradio as gr from transformers import AutoTokenizer from transformers import AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("Aityz/Aityz_model_eli5") model = AutoModelForCausalLM.from_pretrained("Aityz/Aityz_model_eli5") # maxtokens = int(input('What would you like the max tokens to be (default: 100) ')) def aityz(input, maxtokens): prompt = input inputs = tokenizer(prompt, return_tensors="pt").input_ids outputs = model.generate(inputs, max_new_tokens=maxtokens, do_sample=True, top_k=50, top_p=0.95) output = tokenizer.batch_decode(outputs, skip_special_tokens=True) outputstr = ''.join(output) return(outputstr) demo = gr.Interface(fn=aityz, inputs=["textbox", gr.Slider(1, 1000, value=100)], outputs="textbox") demo.launch() # enable share=True for Non Hugging Face Spaces Usage.........