Form_maker / app.py
Aksh1t's picture
Update app.py
ddab986 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the tokenizer and model
model_name = "Aksh1t/mistral-7b-oig-unsloth-merged"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Construct the prompt
prompt = system_message + "\n"
for user_msg, assistant_msg in history:
if user_msg:
prompt += f"User: {user_msg}\n"
if assistant_msg:
prompt += f"Assistant: {assistant_msg}\n"
prompt += f"User: {message}\nAssistant:"
# Encode the prompt and generate a response
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs.input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
# Decode the generated response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the assistant's reply
assistant_reply = response.split("Assistant:")[-1].strip()
yield assistant_reply
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()