Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the tokenizer and model | |
model_name = "Aksh1t/mistral-7b-oig-unsloth-merged" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Construct the prompt | |
prompt = system_message + "\n" | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
prompt += f"User: {user_msg}\n" | |
if assistant_msg: | |
prompt += f"Assistant: {assistant_msg}\n" | |
prompt += f"User: {message}\nAssistant:" | |
# Encode the prompt and generate a response | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
inputs.input_ids, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True | |
) | |
# Decode the generated response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract the assistant's reply | |
assistant_reply = response.split("Assistant:")[-1].strip() | |
yield assistant_reply | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |