import gradio as gr from huggingface_hub import InferenceClient # Initialize the InferenceClient with your model name client = InferenceClient("Aksh1t/mistral-7b-oig-unsloth-merged") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] # Add user and assistant messages from history for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Add current user message messages.append({"role": "user", "content": message}) # Call the InferenceClient for chat completion response = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) # Extract and yield the assistant's response for message in response: token = message.get("choices")[0].get("delta").get("content") yield token # Create a Gradio interface for the chatbot demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()