Aksh1t's picture
Update app.py
8358a85 verified
raw
history blame
2.11 kB
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("Aksh1t/mistral-7b-oig-unsloth-merged")
# Custom chat template
custom_template = {
"chat": {
"prompt": "The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly.\n\nHuman: {input}\nAI:",
"stop": ["\nHuman:"]
}
}
def format_messages(message, history, system_message):
formatted_messages = []
# Add system message if present
if system_message:
formatted_messages.append({"role": "system", "content": system_message})
# Add history messages
for val in history:
if val[0]:
formatted_messages.append({"role": "user", "content": val[0]})
if val[1]:
formatted_messages.append({"role": "assistant", "content": val[1]})
# Add current user message
formatted_messages.append({"role": "user", "content": message})
return formatted_messages
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
formatted_messages = format_messages(message, history, system_message)
response = ""
# Call chat_completion with formatted messages
for message in client.chat_completion(
formatted_messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()