import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("Aksh1t/mistral-7b-oig-unsloth-merged") # Custom chat template custom_template = { "chat": { "prompt": "The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly.\n\nHuman: {input}\nAI:", "stop": ["\nHuman:"] } } def format_messages(message, history, system_message): formatted_messages = [] # Add system message if present if system_message: formatted_messages.append({"role": "system", "content": system_message}) # Add history messages for val in history: if val[0]: formatted_messages.append({"role": "user", "content": val[0]}) if val[1]: formatted_messages.append({"role": "assistant", "content": val[1]}) # Add current user message formatted_messages.append({"role": "user", "content": message}) return formatted_messages def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): formatted_messages = format_messages(message, history, system_message) response = "" # Call chat_completion with formatted messages for message in client.chat_completion( formatted_messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()