Alanturner2
commited on
Upload 2 files
Browse files- .env +1 -0
- custom_summarization_app.py +117 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
OPENAI_API_KEY=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
|
custom_summarization_app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain import PromptTemplate
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.chains.summarize import load_summarize_chain
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
|
10 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
11 |
+
|
12 |
+
@st.cache_data
|
13 |
+
def setup_documents(pdf_file_path,chunk_size,chunk_overlap):
|
14 |
+
loader = PyPDFLoader(pdf_file_path)
|
15 |
+
docs_raw = loader.load()
|
16 |
+
docs_raw_text = [doc.page_content for doc in docs_raw]
|
17 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
|
18 |
+
chunk_overlap=chunk_overlap)
|
19 |
+
docs = text_splitter.create_documents(docs_raw_text)
|
20 |
+
|
21 |
+
return docs
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def custom_summary(docs, llm, custom_prompt, chain_type, num_summaries):
|
26 |
+
custom_prompt = custom_prompt + """:\n {text}"""
|
27 |
+
COMBINE_PROMPT = PromptTemplate(template=custom_prompt, input_variables = ["text"])
|
28 |
+
MAP_PROMPT = PromptTemplate(template="Summarize:\n{text}", input_variables=["text"])
|
29 |
+
if chain_type == "map_reduce":
|
30 |
+
chain = load_summarize_chain(llm,chain_type=chain_type,
|
31 |
+
map_prompt=MAP_PROMPT,
|
32 |
+
combine_prompt=COMBINE_PROMPT)
|
33 |
+
else:
|
34 |
+
chain = load_summarize_chain(llm,chain_type=chain_type)
|
35 |
+
|
36 |
+
summaries = []
|
37 |
+
for i in range(num_summaries):
|
38 |
+
summary_output = chain({"input_documents": docs}, return_only_outputs=True)["output_text"]
|
39 |
+
summaries.append(summary_output)
|
40 |
+
|
41 |
+
return summaries
|
42 |
+
|
43 |
+
@st.cache_data
|
44 |
+
def color_chunks(text: str, chunk_size: int, overlap_size: int) -> str:
|
45 |
+
overlap_color = "#808080"
|
46 |
+
chunk_colors = ["#a8d08d", "#c6dbef", "#e6550d", "#fd8d3c", "#fdae6b", "#fdd0a2"] # Different shades of green for chunks
|
47 |
+
|
48 |
+
colored_text = ""
|
49 |
+
overlap = ""
|
50 |
+
color_index = 0
|
51 |
+
for i in range(0, len(text), chunk_size-overlap_size):
|
52 |
+
chunk = text[i:i+chunk_size]
|
53 |
+
if overlap:
|
54 |
+
colored_text += f'<mark style="background-color: {overlap_color};">{overlap}</mark>'
|
55 |
+
chunk = chunk[len(overlap):]
|
56 |
+
colored_text += f'<mark style="background-color: {chunk_colors[color_index]};">{chunk}</mark>'
|
57 |
+
color_index = (color_index + 1) % len(chunk_colors)
|
58 |
+
overlap = text[i+chunk_size-overlap_size:i+chunk_size]
|
59 |
+
|
60 |
+
return colored_text
|
61 |
+
|
62 |
+
|
63 |
+
def main():
|
64 |
+
st.set_page_config(layout="wide")
|
65 |
+
st.title("Custom Summarization App")
|
66 |
+
llm = st.sidebar.selectbox("LLM",["ChatGPT", "GPT4", "Other (open source in the future)"])
|
67 |
+
chain_type = st.sidebar.selectbox("Chain Type", ["map_reduce", "stuff", "refine"])
|
68 |
+
chunk_size = st.sidebar.slider("Chunk Size", min_value=20, max_value = 10000,
|
69 |
+
step=10, value=2000)
|
70 |
+
chunk_overlap = st.sidebar.slider("Chunk Overlap", min_value=5, max_value = 5000,
|
71 |
+
step=10, value=200)
|
72 |
+
|
73 |
+
if st.sidebar.checkbox("Debug chunk size"):
|
74 |
+
st.header("Interactive Text Chunk Visualization")
|
75 |
+
|
76 |
+
text_input = st.text_area("Input Text", "This is a test text to showcase the functionality of the interactive text chunk visualizer.")
|
77 |
+
|
78 |
+
# Set the minimum to 1, the maximum to 5000 and default to 100
|
79 |
+
html_code = color_chunks(text_input, chunk_size, chunk_overlap)
|
80 |
+
st.markdown(html_code, unsafe_allow_html=True)
|
81 |
+
|
82 |
+
else:
|
83 |
+
user_prompt = st.text_input("Enter the custom summary prompt")
|
84 |
+
pdf_file_path = st.text_input("Enther the pdf file path")
|
85 |
+
|
86 |
+
temperature = st.sidebar.number_input("Set the ChatGPT Temperature",
|
87 |
+
min_value = 0.0,
|
88 |
+
max_value=1.0,
|
89 |
+
step=0.1,
|
90 |
+
value=0.5)
|
91 |
+
num_summaries = st.sidebar.number_input("Number of summaries",
|
92 |
+
min_value = 1,
|
93 |
+
max_value = 10,
|
94 |
+
step = 1,
|
95 |
+
value=1)
|
96 |
+
if pdf_file_path != "":
|
97 |
+
docs = setup_documents(pdf_file_path, chunk_size, chunk_overlap)
|
98 |
+
st.write("PDF loaded successfully")
|
99 |
+
|
100 |
+
if llm=="ChatGPT":
|
101 |
+
llm = ChatOpenAI(temperature=temperature)
|
102 |
+
elif llm=="GPT4":
|
103 |
+
llm = ChatOpenAI(model_name="gpt-4",temperature=temperature)
|
104 |
+
else:
|
105 |
+
st.write("Using ChatGPT while open source models are not implemented!")
|
106 |
+
llm = ChatOpenAI(temperature=temperature)
|
107 |
+
|
108 |
+
if st.button("Summarize"):
|
109 |
+
result = custom_summary(docs, llm, user_prompt, chain_type, num_summaries)
|
110 |
+
st.write("Summary:")
|
111 |
+
for summary in result:
|
112 |
+
st.write(summary)
|
113 |
+
|
114 |
+
|
115 |
+
if __name__=="__main__":
|
116 |
+
main()
|
117 |
+
|